
Total variation regularization for large-scale X-ray tomography
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ABSTRACT

A new large-scale computational total variation regularization algorithm is introduced and tested

with examples arising from X-ray tomography with sparsely sampled data. The total variation

penalty term is discretized using a basis of discontinuous functions. The approach is motivated

by discontinuous Galerkin methods and leads to an additional term of the jump part of total vari-

ation. The proposed algorithm combines the usage of the jump part with a subgradient descent

scheme. A comparison is provided with the gradient-based projected Barzilai-Borwein method

which uses a smoothly approximated total variation penalty. The above two methods are exam-

ples of total variation regularization algorithms that can be applied to large-scale tomographic

problems in reasonable computation time. A comparison between the methods shows that they

use roughly equal computational resources and that the new method produces somewhat blockier

reconstructions. Although the test problems are two-dimensional, both methods can be applied

to three-dimensional situations as well.

Keywords: X-ray tomography, first-order methods, Barzilai-Borwein, subgradient descent, total

variation.
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1 Introduction

In X-ray tomography one has available projection images of a physical body taken from different

directions. The goal is to recover the inner structure of the body from the measured data. In this

work we concentrate on two-dimensional imaging and model a slice through the body by Ω ⊂ R2.

Mathematically, the measurement g̃ is a collection of line integrals of the non-negative attenuation

coefficient function f : Ω→ R along the paths of the X-rays. Here g̃ = Af with A a linear operator

modeling the measurement geometry. In practice we are given noisy data g = g̃+ ε. Reconstructing



f from g is an ill-posed inverse problem, so any successful computational inversion method used for

tomographic imaging needs to be regularized. See (Kak and Slaney, 1988; Natterer, 1986; Mueller

and Siltanen, 2012) for introductions to tomographic imaging.

In most applications of X-ray tomography to medical imaging and non-destructive testing, the

attenuation coefficient contains smoothly varying subdomains divided by sharp boundaries. Total

variation (TV) regularization is known to be a good reconstruction method for such cases, as it

produces noise-robust and edge-preserving reconstructions. The TV-regularized solution is defined

as the minimizer of the functional

LTV (f) :=
∥∥Af − g∥∥ 2

L2 + αTV (f), (1.1)

where α > 0 is a regularization parameter and TV (f) is the total variation of f defined on a bounded

set Ω ⊂ R2 by

TV (f) := sup

{∫
Ω
−fdivϕdx : ϕ ∈ [C1

0 (Ω)]2, ‖ϕ‖∞ ≤ 1

}
.

The idea of total variation penalty methods was introduced by Rudin, Osher and Fatemi (ROF)

(Rudin, Osher and Fatemi, 1992) for removing noise from images. They made the crucial ob-

servation that minimizing the total variation (subject to two other conditions regarding the mean

and variance of the image) enables better restoration of images containing sharp edges. The total

variation regularization is analyzed for example in (Acar and Vogel, 1994). In addition to noise

removal, it has been applied to recovering blurred noisy images (Chambolle and Lions, 1995; Vogel

and Oman, 1998; Chan and Wong, 1998; Bertalmio, Caselles, Rouge and Solé, 2003; Combettes and

Pesquet, 2004). TV regularization can be seen as a regularization method finding solutions whose

derivatives are sparse; sparsity requirement compensates under-sampled data in reconstruction as

shown in (Daubechies, Defrise and De Mol, 2004; Candès, Romberg and Tao, 2006; Grasmair,

Haltmeier and Scherzer., 2008; Hämäläinen, Kallonen, Kolehmainen, Lassas, Niinimäki and Silta-

nen, 2012). There is considerable recent interest in reducing the X-ray dose to patients going

through CT imaging. Several approaches are based on modifying imaging parameters, see (Tsapaki,

Aldrich, Sharma, Staniszewska, Krisanachinda, Rehani, Hufton, Triantopoulou, Maniatis, Papailiou

and Prokop, September 2006; McCollough, Primak, Braun, Kofler, Yu and Christner, 2009; Yu, Liu,

Leng, Kofler, Ramirez-Giraldo, Qu, Christner, Fletcher and McCollough, 2009). However, a more

efficient way of reducing dose is to take fewer projection images. The reconstruction problem then

becomes more ill-posed, and novel large-scale tomographic algorithms are called for. Compared to

the classical filtered back-projection (FBP) algorithm, TV regularization performs better in the case

when the number of projection images is small, see for example (Kolehmainen, Siltanen, Järvenpää,

Kaipio, Koistinen, Lassas, Pirttilä and Somersalo, 2003, Figure 13) or (Mueller and Siltanen, 2012,

Figure 9.5).

Practical total variation regularization is often based on Sobolev functions f ∈ W 1,1(Ω). In that

case the total variation simplifies to

TV (f) = ‖|∇f |‖L1 =

∫
Ω
|∇f |dx =

∫
Ω

√
(∂1f)2 + (∂2f)2,

where ∇f denotes the weak gradient of f .



The novel computational approach introduced in this paper is based on deriving a representation of

the total variation with respect to a basis of piecewise continuous functions on a finite dimensional

mesh Th and the union of cell boundaries Jh. In this case the total variation is given by

TVd(f) =

∫
Jh

|f+ − f−|ds+
∑
T∈Th

∫
T
|∇f |dx,

where, roughly speaking, f+ and f− are the values of f on different sides of the pixel boundary.

This approach is motivated by discontinuous Galerkin finite element methods, such as in the recent

publication (Bartels, 2012). We discuss that only discretizing with respect to a space of piecewise

constant functions does not lead to adequate reconstructions in the setting of X-ray tomography.

Instead we introduce the jump part of the total variation as an additional term to a subgradient

descent scheme.

The attenuation coefficient f is a nonnegative function. This a priori information can be taken into

account by considering the minimization problem

min
f≥0

LTV (f). (1.2)

Enforcing non-negativity in the reconstruction improves tomographic reconstructions considerably,

especially so when the data is sparsely sampled. This can be explained by a simple informal argument:

assume that the unknown f is discretized using N pixels. Then the discrete unknown lives in RN

and must approximately satisfy a finite set of linear equations specified by Af = g. Requiring that

the unknown belongs to the part of RN where are the coordinates are nonnegative restricts the

search space to a tiny fraction 2−N of the full RN .

Let us provide the reader with an idea of the size of N in practical applications. In dental imaging it

is important to see details with size 1
10mm within a region of interest roughly of size 50×50×50mm,

leading to N = 125 000 000. See (Kolehmainen, Vanne, Siltanen, Järvenpää, Kaipio, Lassas and

Kalke, 2006) for a concrete example.

We propose in Section 2 a method for solving the minimization problem (1.2) by employing TVd and

requiring nonnegativity. The basic motivation is to take advantage of the properties of the space

BV of functions of bounded variation (piecewise continuous functions belong to BV ). In other

words, our algorithm is based on a discontinuity assumption on the target f for which we derive

the corresponding total variation term and a modified Euler-Lagrange equation using a subgradient

representation, similar to (Chambolle, 2004).

Advantages of the proposed method include

� simple enforcement of nonnegativity,

� possibility of region-of-interest imaging by varying the pixel size spatially, and

� applicability to large-scale problems.

The new algorithm is called discontinuity-based projected subgradient descent (DB-PSGD). We

will compare it to another large-scale approach used in (Barzilai and Borwein, 1988; Niemi, 2010;

Jensen, Jørgensen, Hansen and Jensen, 2011; Park, Song, Kim, Park, Kim, Liu, Suh and Song,

2012; Niu and Zhu, 2012) and based on smoothing out the non-differentiability in the objective



functional and applying a projected Barzilai-Borwein (PBB) optimization method to the resulting

minimization problem. Our two test cases are two-dimensional X-ray tomography problems based

on simulated data from the Shepp-Logan phantom and on X-ray projection data measured from

a walnut. We stress that both DB-PSGD and PBB methods can readily be generalized to three-

dimensional tomography.

The focus of this work is on fast computational solution of practical large-scale tomographic problems.

Established methods such as primal-dual approaches (Chan, Golub and Mulet, 1999; Wu and Tai,

2010) require solving a nonlinear equation either directly or iteratively. Direct solution is out of

the question in large-scale situations, so iterative methods such as conjugate gradients must be

used. However, this is a major computational effort as each iteration requires a projection and back-

projections step. The advantage of both DB-PSGD and PBB methods over primal-dual approaches

is the significantly smaller number of such steps.

Several computational methods for minimizing the expression (1.1) have been introduced, includ-

ing quadratic programming (Lassas and Siltanen, 2004; Kolehmainen, Lassas, Niinimäki and Silta-

nen, 2012) a lagged diffusivity method (Dobson and Vogel, 1997), domain decomposition methods

(Fornasier and Schönlieb, 2009; Fornasier, Langer and Schönlieb, 2010), Bregman distance methods

(Osher, Burger, Goldfarb, Xu and Yin, 2005; Yin, Osher, Goldfarb and Darbon, 2008; Goldstein and

Osher, 2009; Cai, Osher and Shen, 2009; Zhang, Burger and Osher, 2011), primal-dual methods

(Chan et al., 1999; Chan and Chen, 2006; Esser, Zhang and Chan, 2010; Nesterov, 2011), finite ele-

ment methods (Feng and Prohl, 2003; Bartels, 2012), and other methods (Li and Santosa, 1996; Vo-

gel and Oman, 1998; Wang, Yang, Yin and Zhang, 2008; Hale, Yin and Zhang, 2010; Chambolle,

Levine and Lucier, 2011). Further treatments of total variation regularization and related methods

can be found in the books (Vogel, 2002; Osher and Fedkiw, 2003; Chan and Shen, 2005; Scherzer,

Grasmair, Grossauer, Haltmeier and Lenzen, 2009; Hansen, 2010). Total variation regularization

has been applied to tomographic problems for instance in (Delaney and Bresler, 1998; Kolehmainen

et al., 2003; Kolehmainen et al., 2006; Liao and Sapiro, 2008; Sidky and Pan, 2008; Herman and

Davidi, 2008; Tang, Nett and Chen, 2009; Duan, Zhang, Xing, Chen and Cheng, 2009; Bian, Han,

Sidky, Cao, Lu, Zhou and Pan, 2010; Jensen et al., 2011; Tian, Jia, Yuan, Pan and Jiang, 2011). The

DB-PSGD and PBB methods are convenient for tomographic problems due to effective enforcement

of non-negativity.

This paper is organized as follows. In Section 2 we briefly discuss the mathematical model of X-ray

tomography and describe the computational method proposed for solving the minimization problem

(1.2). Also, the method and equipment used in measuring the X-ray data are described. Section 3

is devoted to numerical results obtained by applying the proposed methods to 2D tomography with

both simulated and real X-ray data. Finally, Section 4 presents conclusions.

2 Methods and materials

The main challenges in finding the minimizer (1.2) numerically are

(i) large-scale of the problem,

(ii) non-differentiability of the objective functional, and

(iii) the non-negativity constraint.



Ω

`1 `2

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

`1 `2

�
�

�
�
�

�
�
�

�
�

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

T1 · · ·
T2
...

TN

Figure 1: Left: A target, i.e. a function f : Ω→ R, to be reconstructed from a set of line integrals over lines

`i. Right: Discretization into N pixels T1, T2, . . . , TN .

In this section we introduce a discontinuity-based projected subgradient descent (DB-PSGD) method

to handle the above challenges. The idea is to employ the advantage of discontinuous functions,

which are included in the space of functions of bounded variation. In addition, we briefly describe

a recently introduced method based on smoothing out the non-differentiability of the objective

functional and then applying a minimization method known as projected Barzilai-Borwein. These

methods are compared by applying them to the tomographic data described in the end of this section.

We begin this section by explaining how X-ray tomography can be modeled with a linear equation

Af = g and how it can be approximated by a corresponding matrix equation Af = g.

2.1 Mathematical model for X-ray tomography

Mathematically the problem of 2D X-ray tomography can be expressed as follows: given the line

integrals

g = g(`) = (Af)(`) =

∫
`
f(x)dx

for a set of lines ` in the plane R2, determine the function f : Ω ⊂ R2 → R (if possible). Radon

showed in 1917 that if g(`) is known for all lines `, then f is uniquely determined, see e.g. (Natterer

and Wübbeling, 2001) for details.

In practical computations we need a discretized version Af = g for the linear equation Af = g.

Thus, we assume here a square shaped domain Ω ⊂ R2 and discretize it into N = n · n pixels such

that f is modelled by a vector f = [f1, f2, . . . , fN ]T ∈ RN whose jth component fj approximates the

value of f in jth pixel. See Figure 1 for an illustration. Then the approximation for the line integral

over the line `i, i = 1, 2, . . . ,M , is given by

gi =

N∑
j=1

ai,jfj , (2.1)

where ai,j is the distance that the line `i (or X-ray) travels in the jth pixel. Now, interpreting ai,j

to be the elements of the matrix A = (ai,j) and g = [g1, g2, . . . , gM ]T ∈ RM we have a matrix

equation model for 2D X-ray tomography. The methods introduced in the following two sections

assume that we have computational routines for computing Az and ATw for any vectors z ∈ RN

and w ∈ RM .



We also introduce here the discrete differential operators by two square matrices D1, D2 ∈ RN×N

for each spatial direction and the discrete gradient Df , by this we have

Df =

(
D1

D2

)
f =

(
D1f

D2f

)
and div

(
f

f

)
=
(
−DT

1 −DT
2

)(f
f

)
= −DT

1 f −DT
2 f .

Given the total number of pixels N = n ·n with the number of rows and columns n and assume the

length of each pixel as h = 1, the derivative matrices simply write as

(D1f)j = fj+n − fj and (D2f)j = fj+1 − fj , (2.2)

for non-boundary terms, i.e. enforcing Neumann boundary condition gives

(D1f)j = 0 if j ∈ {1, 2, . . . , n,N − n+ 1, N − n+ 2, . . . , N}

(D2f)j = 0 if j ∈ {1, n, n+ 1, 2n, . . . , (n− 1)n+ 1, N},

which should in practice be implemented without using any explicit matrices.

2.2 Functions of bounded variation

The aim of our algorithm is to compute a piecewise continuous function by minimizing (1.1) involv-

ing its total variation, in fact our implementation will only compute piecewise constant functions.

Therefore we introduce the space of functions of bounded variation in order to have a clear definition

of the total variation. We will introduce some basic notations and concepts, for a thorough analysis

the reader is advised to consult (Ambrosio, Fusco and Pallara, 2000; Giusti, 1984).

A function f ∈ L1(Ω) is called a function of bounded variation on Ω ⊂ R2, if all of its first order

partial derivatives (in the distributional sense) are measures with finite total variations in Ω. The

derivative of such a function f , is a bounded vector-valued measure, with the finite total variation

TV (f) := sup

{∫
Ω
−fdivϕdx : ϕ ∈ [C1

0 (Ω)]2, ‖ϕ‖∞ ≤ 1

}
. (2.3)

The space of functions of bounded variation in Ω is denoted by BV (Ω), it can be made a Banach

space endowed with the norm

‖f‖BV = ‖f‖L1 + TV (f). (2.4)

The main advantage of the space BV is that it includes piecewise smooth functions and their well

defined derivatives in the distributional sense.

An often used simplified representation of TV (f) arises if one considers only functions in the Sobolev

space W 1,1(Ω), then the total variation simplifies to

TV (f) = ‖|∇f |‖L1 =

∫
Ω
|∇f |dx =

∫
Ω

√
(∂1f)2 + (∂2f)2,

where ∇f denotes the weak gradient of f .

We want to analyse the behaviour of functions with jump discontinuities, therefore it is important to

give a definition for the identification of jump points, that means points where f changes the value

by a jump discontinuity, see (Ambrosio et al., 2000) for the following definition. At first we divide



the ball with center x and radius ρ > 0, denoted by Bρ(x), into two halves defined by a direction

on the unit sphere ν ∈ S1{
B+
ρ (x, ν) := {y ∈ Bρ(x) : (y − x, ν)2 > 0}

B−ρ (x, ν) := {y ∈ Bρ(x) : (y − x, ν)2 < 0}
.

Definition 2.1. (Ambrosio et al., 2000, Def. 3.67) We say that f ∈ BV (Ω) has an approximate

jump point at x if there exist a, b ∈ R, a 6= b, and a direction ν ∈ S1 such that

lim
ρ→0

1

|B+
ρ (x, ν)|

∫
B+
ρ (x,ν)

|f(x)− a|dx = 0, lim
ρ→0

1

|B−ρ (x, ν)|

∫
B−
ρ (x,ν)

|f(x)− b|dx = 0. (2.5)

We will denote the triplet of the values a and b together with its jump direction ν as

(a, b, ν) = (f+(x), f−(x), νf (x)). The set of approximate jump points is denoted by Jf .

The notation of f+ and f− dependent on a direction ν will be of further importance for the proposed

method.

2.3 A discontinuity-based projected subgradient descent method

We use the following model for the non-discretized (continuum) tomographic measurement: Af = g

with A : L2(Ω) → L2(C) a compact linear operator, and Ω, C are suitable bounded sets, e.g.

Ω, C ⊂ R2. We note that BV (Ω) is continuously embedded to L2(Ω) for Ω ⊂ R2, see (Ambrosio

et al., 2000).

The here proposed method is a discontinuity-based projected subgradient descent scheme, similar

to a projected gradient descent algorithm, but without dependence on a smoothing of the total

variation or continuity assumptions on the target function.

The idea is based on a space of discontinuous functions on the mesh, or set of pixels,

Th := {Tj : 1 ≤ j ≤ N} as in Figure 1, defined by

Srd(Th) := {ϕ ∈ L1(Ω) : ϕ|T is a polynomial of degree r for each T ∈ Th},

which is easily seen to be a subspace of BV (Ω).

For the implementation of X-ray tomography we set Ω = [0, n]× [0, n] ⊂ R2 and equip the Hilbert

space L2(Ω) with the L2-inner product, denoted by (·, ·)L2(Ω). If we allow the approximating

functions f to have discontinuities, that is we assume that f ∈ Srd(Th) for r ≥ 0, some modifications

on the mesh need to be specified first. Since the functions may have jumps at the boundary of each

T we need to separate those. A natural approach for image processing is to consider a uniform mesh

as in Figure 1 that is produced by translation of the half open interval T0 = (0, 1]2 for each T ∈ Th,

such that the intersection of two cells is empty.

By this preparation we obtain with integration by parts for f ∈ Srd(Th) and ϕ ∈ [C1
0 (Ω)]2,

−
∫

Ω
fdivϕdx = −

∑
T∈Th

∫
T
fdivϕdx =

∑
T∈Th

(
−
∫
∂T
f̃ϕ · νn ds+

∫
T

(∇f, ϕ) dx

)
,

where f̃ denotes the the C1 extension of f |T on the closure cl(T ) and is considered separately on

each pixel T ∈ Th. Introducing the union of the cell boundaries

Jh :=
⋃
T∈Th

∂T



and taking the supremum over all ϕ ∈ [C1
0 (Ω)]2 with ‖ϕ‖∞ ≤ 1 we give the total variation on

Srd(Th) as

TVd(f) :=

∫
Jh

|f+ − f−|ds+
∑
T∈Th

∫
T
|∇f |dx

:=‖[f ]‖L1(Jh) + ‖|∇f |‖L1(Ω),

(2.6)

with [f ] := f+ − f− and ∇f is defined element-wise on each T ∈ Th.

Remark 2.1. For fh ∈ Srd(Th) we may interpret TVd(fh), depending on the mesh Th, as an approx-

imation of the total variation TV (f) for functions f ∈ SBV (Ω), the space of special functions of

bounded variation which can be decomposed to their absolute continuous and their jump part, see

(Ambrosio et al., 2000). Nevertheless, we can not assure strict convergence of fh to f in SBV (Ω),

see (Bartels, 2012).

The Euler-Lagrange equation, assuming homogeneous Neumann boundary conditions on ∂Ω, and

using a subgradient representation for (1.1) is given by

2A∗(Af − g) + αpTV = 0 with pTV ∈ ∂TV (f).

The subdifferential of the total variation ∂TV with respect to L2(Ω) is defined at f by

pTV ∈ ∂TV (f)⇔ TV (f) + (pTV , h− f)L2(Ω) ≤ TV (h) ∀h ∈ L2(Ω).

pTV ∈ ∂TV (f) is called a subgradient of TV in f and coincides with the classical gradient where TV

is differentiable, see for instance (Chambolle, 2004; Deimling, 1985). We refer for further discussion

and characterization of the subdifferential ∂TV (f) to (Andreu-Vaillo, Caselles and Mazón, 2004).

A minima of (1.1) can be obtained by artificial time evolution of the steepest descent equation
ft = −pTV − 2A∗(Af − g) in Ω× (0, T ]

∂nf = 0 on ∂Ω× (0, T ]

f(·, 0) = f0 in Ω

(2.7)

for a fixed time T > 0 and an initial condition f0. The above gradient flow is also referred as

the total variation flow (TV flow) and is analysed for instance in (Andreu, Ballester, Caselles and

Mazón, 2001). Many authors constructed algorithms based on the TV flow, including the ROF

model (Rudin et al., 1992) and based on that (Li and Santosa, 1996), or such as finite element

approximations of the TV flow in (Feng and Prohl, 2003).

To state an Euler-Lagrange like equation, i.e. a minimal condition, for the objective functional

involving TVd(f),

LTVd(f) :=
∥∥Af − g∥∥ 2

L2 + αTVd(f), (2.8)

we need to separate the terms acting on Ω and Jh, by which we now have to solve the modified

Euler-Lagrange equation for f ∈ Srd(Ω), given by{
2A∗(Af − g) + αp = 0 in Ω

α(f+ − f−) = 0 on Jh
, (2.9)

with a subgradient p ∈ ∂‖|∇f |‖L1(Ω).



2.3.1 Discretization in S0
d(Ω)

As discussed in Section 2.1 the model for X-ray tomography assumes a constant function on each

pixel, this suggests to utilize S0
d(Ω) for the discretization scheme to obtain a consistency in fidelity

and regularization term. The space S0
d(Ω) contains only piecewise constants and hence meets the

requirement. We will now briefly present a resulting algorithm and discuss its properties, which

turned out to be insufficient for our purpose and, hence, a motivation for the proposed DB-PSGD

algorithm.

The gradient of a piecewise constant vanishes in every cell and hence the total variation for f ∈ S0
d(Ω)

contains only the jump part of the function f , i.e.

TVd(f) =

∫
Jh

|f+ − f−|ds, for f ∈ S0
d(Ω). (2.10)

Thus, (2.10) simply sums the jumps across pixels, this can be compared to the introduced discretiza-

tion in (Bartels, 2012). To cut it short, minimizing (1.1) with the representation of TVd(f) in a

discrete setting results in the descent direction

∆0f = 2AT (Af − g) + α
(
sign(D1f) + sign(D2f) + sign(DT

1 f) + sign(DT
2 f)
)

(2.11)

for an iterative algorithm

fk+1 = fk − λ∆0f
k for k = 0, 1, . . . ,

with an initial iterate f0 ∈ RN , step size λ, and sign : RN → RN denotes the component-wise sign

function. It is important to note that the descent direction ∆0f only minimizes the anisotropic total

variation.

A computed reconstruction using this iterative scheme is shown in Section 3, Figure 4. The results

obtained are reasonable but not satisfying in comparison to established methods, i.e. a blocky

structure and typical staircasing effects along round edges, this is partly due to the anisotropic total

variation. The following approach proposes to combine the idea from the pure S0
d(Ω) discretization

with a subgradient descent scheme for the total variation starting from the modified Euler-Lagrange

equation (2.9).

2.3.2 The discretization scheme for the proposed algorithm

Due to not adequate results using the S0
d(Ω) approach we propose the following discontinuity-based

projected subgradient descent method, which combines the advantage of utilizing the jump part and

the subgradient representation. We start by writing (2.9) in a variational form with f, ϕ ∈ Srd(Th)

LTVd(f)(ϕ) := 2(A∗(Af − g), ϕ)L2(Ω) + α(p, ϕ)L2(Ω) + α([f ], ϕ)L2(Jh). (2.12)

The condition for a minimizer f ∈ Srd(Th) can be stated as

LTVd(f)(ϕ) = 0, ∀ϕ ∈ Srd(Th). (2.13)

The main point is to consider each square Tj separately by taking ϕj such that supp(ϕj) = Tj , i.e.

the test functions are only supported on a specific square. Since (2.13) holds for all ϕ ∈ Srd(Th) the

condition is still satisfied for every ϕj for 1 ≤ j ≤ N .



Thus, we have almost the same equation as (2.12) but on separate squares

LTVd(f)(ϕj) = 2(A∗(Af − g), ϕj)L2(Tj) + α(p, ϕj)L2(Tj) + α([f ], ϕj)L2(∂Tj). (2.14)

From this point we switch to the discrete matrix-vector equations. We use only constant functions on

each square, that means the test functions ϕj are represented as a vector indicating each square Tj

by the unit vector ej ∈ RN . This allows a fast and simple representation of the resulting equations.

Thus, (2.14) writes in the discrete case as

L(f)TVd(ej) = 2(AT (Af − g), ej)l2(Tj) + α(p, ej)l2(Tj) + α([f ], ej)l2(∂Tj), (2.15)

which will be the descent direction for the algorithm, compare to (2.9) and (2.7). In the following

we derive an explicit representation for the computations.

We denote the indices of the neighbourhood of a square Tj by

N (Tj) := {i : Ti has an edge togther with Tj , 1 ≤ i ≤ N}.

The inner product along the boundary ∂Tj with an edge to a neighbouring square is given by

(f+ − f−, ej)l2(∂Tj) =
∑

i∈N (Tj)

(fi − fj) = −4fj +
∑

i∈N (Tj)

fi, (2.16)

which can be represented by using the derivative matrices as

(D1 +D2)f + (DT
1 +DT

2 )f .

Similarly for the inner products on Tj , we obtain

(2AT (Af − g) + αp, ej)l2(Tj) = (2AT (Af − g) + αp)j ,

where the finite dimensional subgradient p ∈ RN is given component-wise by

p =


−div

(
Df

|Df |

)
where |Df | 6= 0,

0 else,

with
(
Df
|Df |

)
j

:=
(Df)j
|(Df)j | , that is, the absolute values and divisions are taken element-wise.

This leads to the subgradient descent scheme

fk+1 = fk − λk∆fk for k = 0, 1, . . . ,

for an initial iterate f0 ∈ RN . The step ∆f is the explicit representation of (2.15) given by

∆f = 2AT (Af − g)−α
(

(DT
1

D1f

|Df |
) + (DT

2

D2f

|Df |
)

)
+ α

(
(D1 +D2)f + (DT

1 +DT
2 )f
)
.

(2.17)

It is left to give a step size rule and a stopping condition, for this purpose we define the discrete

functional

L(f) := ‖Af − g‖22 + α‖D̃f‖1 (2.18)



with D̃f a discrete approximation of the Euclidean norm of the gradient of f with its jth component

given by

(D̃f)j =

√
(fj+n − fj)

2 + (fj+1 − fj)
2. (2.19)

By this the step size is calculated under the feasibility constraint

λk ∈ FRλ :=
{
λ : L(fk+1) < L(fk), fk+1 = fk − λfk

}
as

λk = min

{
λmax, max

{
λmin,

{
λ ∈ FRλ : λ =

λk−1

2j
, j ≥ −1

}}}
(2.20)

and since j ≥ −1 it is possible that λ increases during the iteration.

DB-PSGD is an iterative algorithm and hence a stopping condition is needed. In our implementation

the algorithm will stop when a maximum number of iterations Jmax was performed, due to a better

comparison with the PBB method. If one wants to choose an automatic stopping condition, a

suitable choice would be to require that the condition

L(fk−1)− L(fk) < εL(f0) (2.21)

is satisfied for a preassigned small number ε > 0.

To extend the method for solving the constrained minimization problem (1.2), we apply a projec-

tion strategy. More precisely, having computed the iterate fk, we project it to the feasible region

FR := {z ∈ RN | z ≥ 0} using the projection operator P : RN → FR defined component-wise by

(
P (z)

)
j

:=

{
zj if zj ≥ 0

0 if zj < 0
(2.22)

for j = 1, . . . , N and z = (z1, ..., zN ) ∈ RN .

At last we can formulate Algorithm 1 the discontinuity-based projected subgradient descent imple-

mentation for 2D X-ray tomography, which needs only vectors of size N to compute the reconstruc-

tion and no solving of any nonlinear equation.

Algorithm 1 DB-PSGD implementation for 2D X-ray tomography

1: Set k = 0 and choose λ0, f
k, λmin

2: while k ≤ Jmax do

3: Compute ∆fk by (2.17)

4: fk+1 = P (fk − λk∆fk)

5: if λk ∈ FRλ then

6: λk+1 = 2λk

7: else

8: Determine λk by (2.20)

9: fk+1 = P (fk − λk∆fk)

10: end if

11: k = k + 1

12: end while



2.4 Projected Barzilai-Borwein

The Barzilai-Borwein method (Barzilai and Borwein, 1988) is especially suitable for large-scale op-

timization problems due to its relatively inexpensive matrix-free computations and low memory

requirements. It has proven to outperform the classical steepest descent method and be competitive

also with conjugate-gradient methods in many optimization problems. In addition, the method is

simple to implement.

To solve the minimization problem (1.2) numerically using Barzilai-Borwein, we discretize the problem

similarly to (2.18) as

min
f≥0

Lβ(f) := ‖Af − g‖22 + α‖D̃f‖1,β, (2.23)

where A, f and g are as described in section 2.1, D̃f is a discrete approximation of the Euclidean

norm of the gradient of f defined in (2.19), β > 0 is a small parameter, and ‖ · ‖1,β denotes an

approximation of the 1-norm with smoothed absolute value function given by

‖f‖1,β :=

N∑
j=1

√
f 2
j + β, f = (f1, . . . , fN ) ∈ RN ,

similarly to, for example, (Acar and Vogel, 1994; Vogel and Oman, 1996; Dobson and Vogel, 1997).

On the boundary of the image Ω we assume Neumann boundary condition as explained in the

previous subsection.

We need to compute the gradient

∇Lβ(f) = ∇
(
‖Af − g‖22

)
+ α∇

(
‖D̃f‖1,β

)
(2.24)

in order to apply Barzilai-Borwein method to (2.23). For the first term we note that

∇
(
‖Af − g‖22

)
= 2AT (Af − g), (2.25)

while the second term requires a simple differentiation of

‖D̃f‖1,β =
N∑
i=1

√
(D̃f) 2

i + β

with respect to fj , i.e.

∂

∂fj
‖D̃f‖1,β =

2fj − fj+n − fj+1√
(fj+n − fj)2 + (fj+1 − fj)2 + β

+
fj − fj−n√

(fj − fj−n)2 + (fj−n+1 − fj−n)2 + β
(2.26)

+
fj − fj−1√

(fj − fj−1)2 + (fj+n−1 − fj−1)2 + β

for non-boundary components fj (and zero otherwise).

The Barzilai-Borwein (BB) is a gradient based method given by the iteration

fk+1 = fk − λk∇Lβ(fk)

with a special choice of the step size

λk =
(fk − fk−1)T (fk − fk−1)

(fk − fk−1)T (∇Lβ(fk)−∇Lβ(fk−1))
. (2.27)



This choice of step size is based on a two-point approximation for the secant equation underlying

quasi-Newton methods. We remark that (2.27) is not only easier to compute than the line-search-

based classical steepest descent step size but it has also proven to yield significantly better conver-

gence speed than the classical steepest descent method, see e.g. (Fletcher, 2005). An interesting

property of the BB choice of step size is that it leads to a non-monotone method, i.e. the ob-

jective function value is not guaranteed to decrease at every iteration step. The BB method has

been proven to be globally convergent for the case of strictly convex quadratic objective functions

(Raydan, 1993). However, for general objective functionals some type of globalization strategy may

be needed to guarantee convergence, see (Raydan, 1997).

Despite the fact that our objective functional in (2.23) is not quadratic, we have chosen to use no

globalization strategy in this work. Our numerical experience on several different X-ray data sets

with different measurement settings suggests that such a strategy is not necessary in the present

problem of TV regularization for X-ray tomography. However, we emphasize that if a guarantee for

convergence is desired then a globalization similar to that for example in (Raydan, 1997) might be

necessary.

In order to solve the constrained optimization problem (2.23) using BB we apply a strategy of pro-

jected gradient methods similarly as explained in the previous subsection. More precisely, having com-

puted the iterate fk with the BB method, we project it to the feasible region

FR := {z ∈ RN | z ≥ 0} by the projection operator P : RN → FR defined in (2.22). With

this modification the BB method is known as the projected Barzilai-Borwein (PBB) method. The

PBB method is considered in detail for example in (Dai and Fletcher, 2005). Since PBB is an

iterative method we need to specify a stopping condition. A useful condition could be for example

a gradient condition like

‖∇testLβ(fk)‖2 ≤ ε‖∇Lβ(f0)‖2, (2.28)

where ε > 0 is a preassigned number and

(
∇testLβ(fk)

)
j

:=

{ (
∇Lβ(fk)

)
j

if (fk)j > 0

min{
(
∇Lβ(fk)

)
j
, 0} if (fk)j = 0

.

In this study, however, we simply stop the iteration after some preassigned maximum number Jmax

of iterations. Let us finally summarize the resulting algorithm for solving (2.23) with PBB, see

Algorithm 2.

2.5 Tomographic data

To illustrate the computational methods described in the previous subsections, we test them in a

setting of 2D X-ray tomography. This is done by cases of both simulated and real data; these data

sets are described in the following two subsections.

2.5.1 Simulated data

Our test case with simulated data employs the widely-used Shepp-Logan phantom as an image to

be reconstructed from 20 (parallel-beam) projection images. To avoid the most obvious “inverse

crime” making the inversion “too easy”, we create the projection data first on a slightly finer mesh



Algorithm 2 PBB algorithm for solving (2.23)

1: Set k = 0, and choose f0 = 0, λ0 = 10−5, β > 0

2: Compute ∇Lβ(f0) using (2.24), (2.25) and (2.26)

3: while k ≤ Jmax do

4: fk+1 = P (fk − λk∇Lβ(fk))

5: Compute ∇Lβ(fk+1) using (2.24), (2.25) and (2.26)

6: if k < Jmax then

7: λk+1 =
(fk+1 − fk)T (fk+1 − fk)

(fk+1 − fk)T (∇Lβ(fk+1)−∇Lβ(fk))
8: end if

9: Set k = k + 1

10: end while

and then interpolate the data to the final resolution with which the reconstructions are computed.

In addition, to simulate random measurement errors, we add 2% Gaussian random noise to the data.

2.5.2 Data measured from a walnut

The X-ray microtomography measurements of the walnut were performed with the custom-built

µCT device nanotom supplied by Phoenix|Xray Systems + Services GmbH (Wunstorf, Germany).

The sample was mounted on an acrylic rod (diameter 10 mm) with beeswax. The X-ray detector

used was a CMOS flat panel detector with 2304 × 2284 pixels of 50 µm size (Hamamatsu Pho-

tonics, Japan). A set of 1200 projection images were acquired over a full 360 degree rotation with

an angular step of 0.3 degrees between projections. Each projection image was composed of an

average of six 750 ms exposures. The X-ray tube acceleration voltage was 80 kV and tube current

200 µA.

For the purposes of this work only the projection images corresponding to the central cross-section of

the walnut are of interest; these form a set of (fan-beam) projection images of the 2D cross-section.

From these data, we choose (sub)sets of 1200, 120, 60 and 30 projection images with angular steps

of 0.3, 3, 6 and 12 degrees, respectively.

3 Numerical results

In this section we present a demonstration of the DB-PSGD and PBB methods applied to the 2D X-

ray tomography test cases described previously. In the numerical computations we run the methods

for some preassigned number of iterations, i.e. no specific stopping condition is employed. In the last

chapter we only mentioned appropriate choices of stopping conditions for convenience of the reader.

The idea is to illustrate the convergence speeds of the methods by the example with simulated data,

while the real data example only demonstrates how the methods work with real and sparse X-ray

data.

In subsection 3.1 the simulated test case is considered, while in subsection 3.2 we present results

computed from real X-ray data of the walnut. The computations were performed with a machine

equipped with 2.2 GHz Intel Core i7 CPU and 8 GB memory.



3.1 Simulated data

The PBB and DB-PSGD reconstructions after 200, 50 and 10 iterations and the original image are

shown in Figure 2. A demonstration of convergence speeds of the algorithms can be found in Figure

3. The reported relative L2 errors of the reconstructions are computed as

‖original image− reconstruction‖2
‖original image‖2

.

The regularization parameter α > 0 was chosen such that the relative L2 errors were (approximately)

minimized.

A comparison of DB-PSGD with a reconstruction using the pure S0
d(Ω) discretization is shown in

Figure 4. The reconstruction is computed by substituting the descent direction in step 3 of Algorithm

1 by ∆0f given in (2.11). That means, both results are computed with the same algorithm by only

changing the descent direction.

3.2 Real X-ray data of walnut

Let us then turn to an illustration how the methods work with real X-ray data of the walnut. The

reconstructions from 120, 60 and 30 projection images with two different regularization parameters

α are shown in Figures 5 – 10, respectively. In addition to the PBB and DB-PSGD reconstructions

we present a filtered back-projection (FBP) reconstruction of the same target but computed from

the full set of 1200 projection images. This reconstruction serves as a “ground truth” to which the

PBB and DB-PSGD reconstructions may be compared.

The regularization parameter α was chosen by visual inspection such that there is a balance between

two properties: the reconstructions should be as “blocky” as possible and as close to the FBP

reconstruction as possible. The smoothing parameter for PBB is β = 10−5 in all computations.



50 iterations:

10 iterations:

Original image PBB reconstruction DB-PSGD reconstruction

Figure 2: Reconstructions from simulated parallel beam data with 20 projection images. The regularization

parameter is α = 100, and the smoothing parameter for PBB β = 10−5. Noiselevel in data is 2%. On

the upper row, the number of iterations is 200 for both methods, and the computation time 70 seconds for

PBB and 130 seconds for DB-PSGD. Relative L2 error is 45.5% for PBB and 45.2% for DB-PSGD. For

demonstration of convergence speed, also the reconstructions after 50 and 10 iterations are shown on two

lower rows. The resolution of the images is 512x512.
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Figure 3: Relative L2 errors of PBB and DB-PSGD reconstructions (in percents) as functions of iterations.

DB-PSGD pure S0
d(Ω) discretization

Figure 4: Comparison of DB-PSGD and pure S0
d(Ω) discretization. The Reconstructions are from simulated

parallel beam data with 20 projection images. The regularization parameter is α = 100 and a noiselevel

in data of 2%. The results after 200 iterations are shown. Relative L2 error of DB-PSGD is 45.2% and

51.2% for pure S0
d(Ω) discretization. Computation times are 130 sec. for DB-PSGD and 118 for the S0

d(Ω)

discretization. The resolution of the images is 512x512.



Ground truth PBB (120 projections) DB-PSGD (120 projections)

Figure 5: Reconstructions from 120 fan-beam projection images. The regularization parameter is α = 10−3. The

number of iterations is 200 for both methods. Computation times of PBB and DB-PSGD were 740 and 1230 seconds,

respectively. The resolution of the PBB and DB-PSGD reconstructions is 512x512.

Ground truth PBB (60 projections) DB-PSGD (60 projections)

Figure 6: Reconstructions from 60 fan-beam projection images. The regularization parameter is α = 10−3. The

number of iterations is 200 for both methods. Computation times of PBB and DB-PSGD were 360 and 600 seconds,

respectively. The resolution of the PBB and DB-PSGD reconstructions is 512x512.

Ground truth PBB (30 projections) DB-PSGD (30 projections)

Figure 7: Reconstructions from 30 fan-beam projection images. The regularization parameter is α = 10−3. The

number of iterations is 200 for both methods. Computation times of PBB and DB-PSGD were 180 and 300 seconds,

respectively. The resolution of the PBB and DB-PSGD reconstructions is 512x512.



Ground truth PBB (120 projections) DB-PSGD (120 projections)

Figure 8: Reconstructions from 120 fan-beam projection images. The regularization parameter is α = 5 · 10−3. The

number of iterations is 200 for both methods. Computation times of PBB and DB-PSGD were 740 and 1230 seconds,

respectively. The resolution of the PBB and DB-PSGD reconstructions is 512x512.

Ground truth PBB (60 projections) DB-PSGD (60 projections)

Figure 9: Reconstructions from 60 fan-beam projection images. The regularization parameter is α = 5 · 10−3. The

number of iterations is 200 for both methods. Computation times of PBB and DB-PSGD were 360 and 600 seconds,

respectively. The resolution of the PBB and DB-PSGD reconstructions is 512x512.

Ground truth PBB (30 projections) DB-PSGD (30 projections)

Figure 10: Reconstructions from 30 fan-beam projection images. The regularization parameter is α = 5 · 10−3. The

number of iterations is 200 for both methods. Computation times of PBB and DB-PSGD were 180 and 300 seconds,

respectively. The resolution of the PBB and DB-PSGD reconstructions is 512x512.



4 Discussion

Tomographic imaging from sparsely collected projection data allows new low-dose medical imaging

possibilities. However, the mathematical reconstruction problem is very ill-posed and calls for effi-

cient regularization methods. Also, practical applications require fine discretization of the unknown

attenuation coefficient, leading to computationally demanding large-scale problems.

We introduce a novel large-scale algorithm called discontinuity-based projected subgradient descent

method (DB-PSGD) for computing total variation (TV) regularized reconstructions. The method

is inspired by a discontinuous Galerkin discretization. We test DB-PSGD on realistically large-scale

tomographic problems with both simulated and measured data.

How to choose a benchmark algorithm providing a comparison for the new method? The chosen

algorithm should be applicable to large-scale problems, be relatively established, have computational

complexity comparable to DB-PSGD, allow enforcement of non-negativity of the unknown attenu-

ation coefficient, and work with a matrix-free implementation of the measurement operator and its

adjoint. The very popular primal-dual approaches are not optimal for this as they require much more

operator evaluations than DB-PSGD. We decided to choose the projected Barzilai-Borwein (PBB)

optimization method applied to total variation penalty with smoothed-out absolute value function.

PBB and DB-PSGD turn out to have rather similar properties in terms of computational expense

and image quality. Both methods are good choices for computing tomographic reconstructions

from sparsely sampled X-ray projection images, reconstructing the main features and edges of the

unknown even if the data sets are noisy and strongly limited. However, DB-PSGD has a couple of

advantages over PBB. First, DB-PSGD requires no smoothing of the TV functional and thus yields

reconstructions with sharper edges compared to algorithms with smoothed TV. This is illustrated

for example in the walnut reconstructions in Figure 8 computed from real X-ray data. Second,

DB-PSGD offers the possibility to focus on a region-of-interest by varying the pixel size spatially;

this is an interesting topic for further research.

The choice of the regularization parameter α has a significant effect on the reconstructions with

both methods. The smoothing parameter β for PBB plays a crucial role as well; too large β leads to

reconstructions with smooth (blurred) edges while too small β causes numerical difficulties. Auto-

matic choice of these parameters would be useful for practical applications, but creating such choice

rules is a deep problem and outside the scope of this feasibility study. In conclusion, DB-PSGD is a

promising new large-scale method for computing crisp TV regularized tomographic reconstructions.
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Bertalmio, M., Caselles, V., Rouge, B. and Solé, A. 2003. TV based image restoration with local

constraints, Journal of Scientific Computing 19(1-3): 95–122.

Bian, J., Han, X., Sidky, E. Y., Cao, G., Lu, J., Zhou, O. and Pan, X. 2010. Investigation of sparse

data mouse imaging using micro-CT with a carbon-nanotube-based X-ray source, Tsinghua Sci

Technol 15(1): 74–78.

Cai, J.-F., Osher, S. and Shen, Z. 2009. Linearized Bregman iterations for frame-based image

deblurring, SIAM J. Imaging Sci. 2(1): 226–252.

Candès, E., Romberg, K. J. and Tao, T. 2006. Stable signal recovery from incomplete and inaccurate

measurements, Communications on Pure and Applied Mathematics 59(8): 1207–1223.

Chambolle, A. 2004. An algorithm for total variation minimization and applications, Journal of

Mathematical imaging and vision 20(1): 89–97.

Chambolle, A., Levine, S. E. and Lucier, B. J. 2011. An upwind finite-difference method for total

variation-based image smoothing, SIAM J. Imaging Sci. 4(1): 277–299.

Chambolle, A. and Lions, P. 1995. Image recovery via total variation minimization and related

problems, Numerische Mathematik 76: 167–188.

Chan, T. F. and Chen, K. 2006. On a nonlinear multigrid algorithm with primal relaxation for the

image total variation minimisation, Numer. Algorithms 41(4): 387–411.

Chan, T. F., Golub, G. H. and Mulet, P. 1999. A nonlinear primal-dual method for total variation-

based image restoration, SIAM Journal on Scientific Computing 20(6): 1964–1977.

Chan, T. F. and Shen, J. 2005. Image processing and analysis, Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA. Variational, PDE, wavelet, and stochastic methods.



Chan, T. F. and Wong, C. 1998. Total variation blind deconvolution, IEEE Transactions on Image

Processing 7(6): 370–375.

Combettes, P. L. and Pesquet, J. 2004. Image restoration subject to a total variation constraint,

IEEE Transactions on Image Processing 13(9): 1213–1222.

Dai, Y.-H. and Fletcher, R. 2005. Projected Barzilai-Borwein methods for large-scale box-constrained

quadratic programming, Numerische Mathematik 100(1): 21–47.

Daubechies, I., Defrise, M. and De Mol, C. 2004. An iterative thresholding algorithm for linear

inverse problems with a sparsity constraint, Communications on pure and applied mathematics

57(11): 1413–1457.

Deimling, K. 1985. Nonlinear Functional Analysis, Springer-Verlag.

Delaney, A. H. and Bresler, Y. 1998. Globally convergent edge-preserving regularized reconstruction:

an application to limited-angle tomography, IEEE Transactions on Image Processing 7(2): 204–

221.

Dobson, D. and Vogel, C. 1997. Convergence of an iterative method for total variation denoising,

SIAM Journal on Numerical Analysis 34(5): 1779–1791.

Duan, X., Zhang, L., Xing, Y., Chen, Z. and Cheng, J. 2009. Few-view projection reconstruction

with an iterative reconstruction-reprojection algorithm and TV constraint, Nuclear Science,

IEEE Transactions on 56(3): 1377 –1382.

Esser, E., Zhang, X. and Chan, T. F. 2010. A general framework for a class of first order primal-dual

algorithms for convex optimization in imaging science, SIAM J. Imaging Sci. 3(4): 1015–1046.

Feng, X. and Prohl, A. 2003. Analysis of total variation flow and its finite element approximations,

M2AN Math. Model. Numer. Anal. 37(3): 533–556.

Fletcher, R. 2005. On the Barzilai-Borwein method, Optimization and Control with Applications,

Vol. 96 of Applied Optimization, Springer US, pp. 235–256.

Fornasier, M., Langer, A. and Schönlieb, C.-B. 2010. A convergent overlapping domain decomposi-

tion method for total variation minimization, Numer. Math. 116(4): 645–685.

Fornasier, M. and Schönlieb, C.-B. 2009. Subspace correction methods for total variation and

l1-minimization, SIAM J. Numer. Anal. 47(5): 3397–3428.

Giusti, E. 1984. Minimal surfaces and functions of bounded variation, Vol. 80 of Monographs in

Mathematics, Birkhäuser.
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