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A DATA-DRIVEN EDGE-PRESERVING D-BAR METHOD

FOR ELECTRICAL IMPEDANCE TOMOGRAPHY

Abstract. In Electrical Impedance Tomography (EIT), the internal
conductivity of a body is recovered via current and voltage measure-
ments taken at its surface. The reconstruction task is a highly ill-posed
nonlinear inverse problem, which is very sensitive to noise, and requires
the use of regularized solution methods, of which D-bar is the only
proven method. The resulting EIT images have low spatial resolution
due to smoothing caused by low-pass filtered regularization. In many
applications, such as medical imaging, it is known a priori that the
target contains sharp features such as organ boundaries, as well as ap-
proximate ranges for realistic conductivity values. In this paper, we
use this information in a new edge-preserving EIT algorithm, based on
the original D-bar method coupled with a deblurring flow stopped at
a minimal data discrepancy. The method makes heavy use of a novel
data fidelity term based on the so-called CGO sinogram. This nonlinear
data step provides superior robustness over traditional EIT data formats
such as current-to-voltage matrices or Dirichlet-to-Neumann operators,
for commonly used current patterns.
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1. Introduction

Noise-robust solutions of ill-posed inverse problems are based on regular-
ization strategies. For Electrical Impedance Tomography (EIT), the only
proven regularization strategy is the low-pass filtered D-bar Method, which
sets high scattering frequencies to zero therefore resulting in smoothed im-
ages where sharp features important to applications such as medical imaging
are often absent. In this paper, we propose to recover edges in the smoothed
EIT reconstructions by applying a deblurring flow stopped at a minimal data
discrepancy (Figure 1), guided by a novel data fidelity term based on the
so-called CGO sinogram, which provides superior robustness.

Electrical Impedance Tomography (EIT) is an imaging modality where an
unknown physical body is probed with electricity using electrodes attached
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True D-bar Improved

Figure 1. Left: true conductivity. Middle: blurry D-bar re-
construction from 0.5% noise corrupted EIT measurements,
relative l1-error 15.11%. Right: reconstruction by the pro-
posed edge-preserving algorithm, relative l1-error 12.57%.

to the surface of the body. The goal is to recover the internal conductiv-
ity distribution of the body typically based on current-to-voltage boundary
measurements. EIT has applications in medical imaging, underground con-
taminant detection and industrial process monitoring. See [10] and [30,
Chapter 12] for more details and applications of EIT.

We formulate the inverse conductivity problem [8] for two-dimensional
EIT in terms of voltage-to-current measurements. Let Ω ⊂ R

2 be the unit
disc. We model the conductivity by a bounded measurable function σ :
Ω → R satisfying C > σ(z) ≥ c > 0 for almost every z ∈ Ω. For a

prescribed boundary voltage f ∈ H1/2(∂Ω), the voltage potential u satisfies
the conductivity equation

(1.1)
∇ · σ∇u = 0, in Ω,

u|∂Ω = φ, on ∂Ω .

Infinite-precision voltage and current measurements are modeled by the
Dirichlet-to-Neumann (DN), or voltage-to-current density, map

Λσ : φ 7→ σ
∂u

∂ν

∣∣∣∣
∂Ω

,

where ν denotes the outward facing unit normal to ∂Ω. The goal of EIT
is to recover the conductivity distribution σ(z) for z ∈ Ω, approximately,
from the knowledge of a practical data matrix Λδ

σ satisfying ‖Λσ−Λδ
σ‖Y ≤ δ

with known noise amplitude δ and an appropriate data space Y , see [27] on
details for such a space.

EIT is a severely ill-posed inverse problem, in fact it is only log stable. By
this we mean that small changes in boundary measurements can correspond
to large changes in the internal conductivity distribution, and furthermore
that noise in the data is amplified exponentially. Therefore, regularization
is needed for the noise-robust recovery of σ from Λδ

σ. The forward map
σ 7→ Λσ is too nonlinear to be covered by the presently available theory
of iterative (Tikhonov-type) regularization. So far the only methodology
providing proven regularization properties is the so-called D-bar method in
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dimension two [38, 29, 27]. Regularization for the 3D case is in progress,
based on [11, 6, 14].1

There exists a nonlinear Fourier transform t : C → C that is intimately
connected to EIT. Namely, Nachman showed in [33] that one can use infinite-
precision EIT data Λσ to completely determine t, and then apply the inverse
transform, via solving a D-bar equation in the scattering variable, to recover
the conductivity. However, in practice one never has such infinite-precision
noise-free data; instead one works with noisy data Λδ

σ. The basic structure
of the regularized D-bar method is shown in Figure 2. Practical data Λδ

σ

only allow stable computation of the nonlinear Fourier transform in a disc
centered at the origin in the frequency domain. One can then use the good
part of the transform in the inversion, corresponding to a nonlinear low-pass
filtering. The cut-off frequency R of the nonlinear low-pass filter depends
logarithmically on the noise amplitude, tending to infinity asymptotically in
the zero-noise limit. Analogously to linear low-pass filtering, the resulting
image is smoothed and appears blurred.

In general, noise-robust solutions of ill-posed inverse problems are based
on complementing indirect and unstable measurement data with a pri-
ori information. The transform domain of the D-bar method organizes
the measurement information neatly into a stable part (|k| < R) and un-
known/unstable part (|k| ≥ R). Roughly speaking, information about the
high frequencies of the unknown conductivity are missing from EIT data.

What kind of a priori information do we have? In many applications of
EIT it is reasonable to assume that the conductivity is piecewise constant
with crisp boundaries between the homogeneous regions. Those boundaries
have significant high-frequency content which is not stably represented in
the data. Modern imaging science provides several options for sharpening
blurred images, which may help to recover the edges in the true conductiv-
ity. The most straightforward edge-sharpening approach, the Perona-Malik
anisotropic diffusion approach [34] (see [37, 40] for its generalizations) proved
insufficient in our work due to either too smooth edges or instability at high
gradients. We therefore used the technique proposed by Ambrosio and Tor-
torelli [2] as an approximation to the classical Mumford-Shah image segmen-
tation functional [31]. With this method, areas separate nicely and develop
constant values, while the gradient can be controlled by the auxiliary vari-
able of the model. This functional has been widely used in image processing,
see for instance [9, 15, 25]. On the other hand the approach is rather un-
common for inverse problems, there are a few examples in signal restoration
[22], X-ray tomography [35], and particular for EIT imaging [36]. A recent
paper utilizes a Perona-Malik prior for Bayesian inversion in EIT imaging
[21].

It is well-known that minimizing the Ambrosio-Tortorelli (AT) functional
can be used to sharpen and segment blurry images [2, 37]. The image flows
in time according to a nonlinearly deforming diffusivity. High gradients in
the initial image will develop sharp edges, while slowly varying regions will
tend to constant-value areas in the final image. See Section 3 for more
information about AT. Simply minimizing the AT functional for the blurry

1Personal communication with Kim Knudsen and his team.
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Figure 2. Schematic illustration of the nonlinear low-pass
filtering approach to regularized 2D EIT. The simulated
heart-and-lungs phantom (c) gives rise to a finite voltage-
to-current matrix Λδ

σ (orange square), which can be used to
determine the nonlinear Fourier transform (a). Measurement
noise causes numerical instabilities in the transform (see the
irregular white patches in (a)), leading to an unstable and in-
accurate reconstruction (d). However, multiplying the trans-
form by the characteristic function of the disc |k| < R yields
a lowpass-filtered transform (b), which in turn gives a noise-
robust approximate reconstruction (e).

D-bar reconstruction will introduce edges, but we need to ensure that the
change is for the better. In particular in medical imaging applications we
need to avoid introducing artifacts. We propose controlling the AT flow via
the measured EIT data.

But how should one check the compatibility of the evolving conductivity
to the measured data? One option would be to simulate the EIT measure-
ment matrix Λt at each time step for the evolving AT image and ensure that
the distance to the measured matrix Λδ

σ decreases. However, more robust
control is provided by a novel concept called the CGO sinogram. It con-
sists of the traces of the complex geometric optics (CGO) solutions (of the
D-bar method) at the boundary, corresponding to low-frequency spectral
parameters only. The CGO sinogram is stable to compute from EIT data .
Furthermore, it appears to contain geometric information about the conduc-
tivity in a far more explicit form than the DN map (see Figure 4), at least
for some of the most traditionally used current patterns, e.g., trigonometric
current patterns.
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Iteration
number 0 15 30 45 60 75

Segmentation
by AT flow

Enhanced
contrast

Error in CGO
sinogram (%) 20.3 17.76 17.41 17.28 17.36 17.56

Figure 3. Graphical overview of the proposed EIT recon-
struction algorithm. The starting point of the Ambrosio-
Tortorelli segmentation flow is the outcome of the low-pass
filtered D-bar method (iteration 0), here resulting from sim-
ulated EIT measurements with 0.5% noise. The final recon-
struction is chosen to be the contrast-enhanced image having
the smallest CGO sinogram error. The measured EIT data
is used in the calculation of the error.

While the AT flow will introduce edges, as desired, it also lowers the
contrast in the image. To overcome this problem, we introduce a contrast-
enhancement step. See Figure 3 for the result. We remark that our method
provides a novel connection between the PDE-based inverse problems com-
munity and the PDE-based image processing community having a poten-
tially strong impact on both.

The remainder of the paper is organized as follows. Sections 2-4 contain
the theory behind the key pieces in the new edge preserving reconstruction
method guided by the data-driven contrast enhancement of Section 5. In
Section 2, the D-bar method is reviewed. The Ambrosio-Tortorelli functional
used for recovering edges is described in Section 3. In Section 4, the novel
CGO sinogram is introduced and the data-driven contrast enhancement is
presented in Section 5. For the reader’s convenience, Section 6 is dedicated to
an explicit description of the algorithm. In Section 7, the proposed algorithm
is demonstrated on simulated noisy EIT measurements. A discussion of the
results is given in Section 8 and the take home message and conclusions of
the paper are given in Section 9.

2. A Brief Review of the D-bar Method

By the D-bar method we refer to the EIT algorithm based on the theory
introduced in [33], first implemented in [38] and equipped with an explicit
regularization step in [27]. Alternative D-bar methods have since emerged
which handle complex coefficients [18, 19, 20], less regular conductivities
[7, 26, 28] and merely bounded L∞ conductivities [4, 5, 3]. However, for the
purpose of this article, we proceed with the well-established setting of [27],
the only 2D approach with a proven regularization strategy.
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The core idea in the D-bar method is to use a nonlinear Fourier transform
tailor-made for EIT. To define the transform we need modified exponential
functions, also called Complex Geometrical Optics (CGO) solutions.

Assume (for now) that σ ∈ C2(Ω) and that σ = 1 in a neighborhood of the
boundary. The constant non-unitary condition near ∂Ω can be dealt with
by scaling as discussed below. The conductivity equation (1.1) can then be
transformed, using the change of variables ψ =

√
σu, to the Schrödinger

equation

[−∆+ q]ψ = 0.

Here we define the potential q by extending σ from Ω to all of C by setting
σ(z) ≡ 1 for z ∈ C \ Ω and writing

q(z) =
∆
√
σ(z)√
σ(z)

.

Note that q has compact support in Ω.
We introduce an auxiliary variable k ∈ C \ 0 and look for CGO solutions

ψ(z, k) satisfying

[−∆+ q(·)]ψ(·, k) = 0

with the asymptotic condition

e−ikzψ(z, k) − 1 ∈W 1,p(R2).

We associate R
2 with C by the mapping z = (x, y) 7→ x + iy, so that

kz = (k1 + ik2)(x + iy) denotes complex multiplication. For later use we
introduce the related CGO solutions µ(z, k) = e−ikzψ(z, k).

CGO solutions were originally introduced by Faddeev in [16] and later
reinvented in the context of inverse problems in [39]. By [33] we know that
the solutions ψ exist and are unique for any 2 < p < ∞ for the potentials
we consider here. (Other kinds of potentials may have exceptional points, or
k values with no unique ψ( · , k). See [32] for more details.)

The regularized D-bar reconstruction algorithm is comprised of the fol-
lowing steps:

Λδ
σ

1−→ tR(k)
2−→ σR(z).

Step 1: From boundary measurements Λδ
σ to scattering data tR.

For each fixed k ∈ C \ 0, solve the Fredholm integral equation of the
second kind for z ∈ ∂Ω

(2.1) ψδ(z, k) = eikz −
∫

∂Ω
Gk(z − ζ)

[
Λδ
σ − Λ1

]
ψδ(ζ, k) dS(ζ),

where Λ1 is the DN map for the constant unit conductivity, and Gk

is the Faddeev Green’s function [16], with asymptotics matching ψ,
defined by

Gk(z) := eikzgk(z), gk(z) :=
1

(2π)2

∫

R2

eiz·ξ

|ξ|2 + 2k (ξ1 + iξ2)
dξ.
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Evaluate the scattering transform tR for the cut-off frequency R > 0
using the boundary traces ψδ from (2.1)

(2.2) tR(k) :=

{∫
∂Ω e

ik̄z̄
[
Λδ
σ − Λ1

]
ψδ(z, k) dS(z), |k| < R

0 |k| ≥ R.

Step 2: From scattering data tR to conductivity σR.
Fix z ∈ Ω and solve the D-bar equation

(2.3) ∂k µ
R(z, k) =

1

4πk̄
tR(k)e(z,−k)µR(z, k),

where e(z, k) := exp
{
i
(
kz + k̄z̄

)}
, saving µR(z, 0). The regularized

conductivity σR is recovered by

(2.4) σR(z) =
(
µR(z, 0)

)2
.

If σ 6= 1 near ∂Ω, but is instead a constant σ0, the entire problem can be
scaled as follows. Let σ̃ = σ/σ0 denote a scaled conductivity which then has
a value of 1 near ∂Ω. The corresponding scaled DN map is then computed
by

Λσ̃ = σ0Λσ.

After recovering σ̃R from Step 2 of the D-bar algorithm above, undo the
scaling by multiplying by σ0 yielding the correct σR.

The algorithm described above has been used successfully on both sim-
ulated and experimental data [38, 29, 23, 27]. In many applications it
is well known that high frequency features such as jump discontinuities
and clear edges are present, e.g. organ boundaries. However, the low-
frequency truncation needed in the regularized D-bar algorithm results in
smoothed/blurred reconstructions where these high-frequency features are
often absent. This calls for post-processing of the D-bar reconstruction to
reintroduce the missing features. We propose minimizing a functional in a
process known as Ambrosio-Tortorelli image segmentation.

3. Diffusive Image Segmentation

Consider the following image processing problem. We begin with a smooth
image ũ, which is the result of a blurring process applied to a clean, piecewise
constant image u. How can we recover u from ũ?

In 1985, Mumford and Shah introduced the following functional for the
purpose of detecting boundaries in general images [31]:

(3.1) EMS(u,K) =

∫

Ω\K
|∇u|2dx+ β

∫

Ω
(u− ũ)2dx+ α|K|,

where K denotes a curve segmenting Ω, |K| the length of K, and the two
parameters α, β > 0 are used for weighting the terms. The idea is to find
the minimum of EMS(u,K) over images u and curves K; the minimizing
image is then considered an edge-preserving reconstruction of u from ũ.

AsK is unknown and singular, numerically minimizing (3.1) is a challeng-
ing task; in particular formulating a gradient-descent method with respect
toK is not straightforward. Therefore, Ambrosio and Tortorelli [2] proposed
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an elliptic approximation to (3.1) by introducing an edge-strength function
v : Ω → [0, 1] for controlling the gradient of u. The Ambrosio-Tortorelli
(AT) functional is defined by

(3.2) EAT (u, v) =

∫

Ω
β(u− ũ)2 + v2|∇u|2 + α

(
ρ|∇v|2 + (1− v)2

4ρ

)
dx.

The additional parameter ρ > 0 specifies, roughly speaking, the edge width
of u. Then EAT Γ-converges to EMS as ρ→ 0 [2], which can be understood
as solutions of (3.2) converge to solutions of (3.1) with the parameter ρ→ 0,
for further explanations see [9].

The advantage of (3.2) over (3.1) is that the minimizer can be obtained by
an artificial time evolution formulated via a coupled PDE as the gradient-
descent equations with an imposed homogeneous Neumann boundary con-
dition:

(3.3)





∂tu = div(v2∇u)− β(u− ũ) in Ω× (0, T ],

∂tv = ρ∆v − v|∇u|2
α

+
1− v

4ρ
in Ω× (0, T ],

∂nu = 0, ∂nv = 0 on ∂Ω× (0, T ],

u(·, 0) = ũ, v(·, 0) = v0 in Ω.

The equations in (3.3) are referred to as the AT flow. With these gradient
descent equations, implementing the numerical minimization algorithm is
now a straightforward task (use finite differences or a parabolic finite element
solver). Numerous modifications of the functionals (3.1) and (3.2) have been
proposed, e.g. substituting the squared norm |∇u|2 with |∇u| in the spirit
of Total Variation [1], or adjusting the auxiliary function v as in [15].

The effect of (3.2) can be visualized as follows. First, keeping v fixed, one
sees that the first equation (3.3) minimizes the functional

∫

Ω
β(u− ũ)2 + v2|∇u|2dx = β‖u− ũ‖2L2(Ω) + ‖v|∇u|‖2L2(Ω).

The representation on the right hand side is a typical form for stating reg-
ularization problems. The first fidelity term controls the distance of the
obtained solution from the initial reconstruction, whereas the regulariza-
tion term weights ∇u with respect to the positive (here fixed) edge-strength
function v. The balance between the fidelity and regularization terms can
be controlled by the regularization parameter β > 0.

In the same manner, keeping u fixed, from the second equation in (3.3),
we have a minimizer for a functional that can be written as

∫

Ω
4ρ|∇v|2 + 1 + 4ρ

α |∇u|2
ρ

(
1

1 + 4ρ
α |∇u|2

− v

)2

dx.

Here we clearly see the auxiliary variable can be interpreted as a smooth
approximation to the Perona-Malik filter [34], given by

(3.4) g(|∇u|2) = 1

1 + 4ρ
α |∇u|2

.

To state a minimizing algorithm on the equations (3.3), one needs to specify
an initial guess of v0. This is where the interpretation (3.4) comes in handy
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and we can set the first approximation for the auxiliary variable as v0 =
g(|∇ũ|2).

Perona and Malik based their edge-aware smoothing on the diffusion equa-
tion

(3.5) ∂tu = div(g(|∇u|2)∇u).
Historically, the model in (3.5) has a strong effect on noise removal and
the smoothing of images, by keeping edges stable for a long time in the
process. However, one downside of this particular diffusion concept is that
the limiting function is a constant and hence a stopping criterion during the
iteration is needed [40]. In contrast, the AT functional in (3.2) converges
to the Mumford-Shah segmentation functional (3.1), for which minimizers
are known to be piecewise constant with respect to the discontinuity set K
[13]. By using the AT functional instead, the problem of defining a proper
stopping criterion is shifted to choosing the correct parameters α and β, and
making it possible to adapt the minimization problem to the reconstruction
task at hand.
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4. The CGO Sinogram

The central idea of this study is to complement the regularized D-bar method
by applying an edge-introducing image processing algorithm to a blurred
EIT reconstruction. However, when manipulating the EIT image we need to
ensure that we are improving the image. This is accomplished by monitoring
the resulting error in a novel way (see Figure 3).

The obvious approach is to monitor the data discrepancy ‖Λδ
σ − Λσ′‖Y ,

where Λδ
σ is the measured data and σ′ denotes the enhanced reconstruc-

tion, but the basic observation behind our new data fidelity term is that,
for the commonly used trigonometric current patterns, the DN map encodes
geometric information nonlinearly in a very complicated, non-intuitive, and
often unstable way. For example, take a look at the three conductivities
shown in the left column of Figure 4. They each have one circular inclusion
of conductivity two embedded into a homogeneous background of unit con-
ductivity. The middle column shows the matrix approximations to the DN
map. Can you deduce the location of the inclusion from the DN map? We
didn’t think so.

We recall from Section 2 the related CGO solutions µ(z, k) = e−ikzψ(z, k)
with asymptotic behaviour

µ(z, k) − 1 ∈W 1,p(R2).

Now take a look at the right column in Figure 4. There we show the absolute
value of the difference of the CGO solution µ(z, k) = µ(eiθ, 2eiϕ) and its
limiting value 1, i.e. |µ(eiθ, 2eiϕ)−1|, as a function of the spectral frequency
angles ϕ (vertical axis) and physical angles θ (horizontal axis) where both
angles range from 0 to 2π. The locations of the inclusions are immediately
discernible!

Clearly, Figure 4 is just one very simple example. See Figure 5 for a
more complicated situation, where we add a circular inclusion to a heart-
and-lungs phantom. The location of the inclusion is clearly indicated in the
difference of the two CGO sinograms.

We believe that the numerical evidence presented in Figures 4 and 5
reflects a more general fact: calculating the CGO sinogram

Sσ(θ, ϕ, r) :=µ(e
iθ, reiϕ)− 1

= exp(−irei(ϕ+θ))ψ(eiθ , reiϕ)− 1
(4.1)

from the EIT measurements of σ is stable (for r > 0 inside the region of
proven stability) and encodes the geometry of the conductivity in a useful
and more transparent way.



AN EDGE-PRESERVING D-BAR METHOD FOR EIT 11

Conductivity DN matrix CGO sinogram

arg(z)

arg(k)

3π/2

π

π/2

3π/2

π

0 π/2 2π

Figure 4. Left: conductivities with background one and
circular inclusion of conductivity two. The polar coordinate
angle of the center of the inclusion is indicated. Middle: the
matrix approximation to the Dirichlet-to-Neumann map cor-
responding to each conductivity. More precisely, the matrix
approximation to Λδ

σ −Λ1 is plotted to remove the dominat-
ing diagonal elements and bring out the differences between
a homogeneous and inhomogeneous conductivity, σ1 and σ,
more clearly. Right: CGO sinogram corresponding to each
conductivity. The color shows the values of |µ(z, k) − 1| for
|z| = 1 and |k| = 2. Note that the CGO sinograms carry
clear geometric information, as opposed to the DN maps.
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Conductivity 1 Conductivity 2 Difference

5π
4

5π
4

CGO sinogram 1 CGO sinogram 2 Difference

0
5π
4

2π

Figure 5. Top row: two heart-and-lungs conductivities (one
with an extra circular inclusion), and their difference. The
conductivity values are as follows. Heart: 4 (red), lungs:
1/2 (blue), background: 1 (green) and inclusion: 2 (orange).
The polar coordinate angle of the center of the inclusion is
indicated. Bottom row: absolute values of the corresponding
CGO sinograms and their absolute difference. Note that the
location of the inclusion is clearly visible in the bottom right
plot.
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5. Contrast Enhancement

The Ambrosio-Tortorelli (AT) segmentation flow, discussed in Section 3
above, can transform a blurry image into a sharper image. However, the
AT flow comes with a reduction in contrast, which in turn is a key benefit
of EIT imaging. To overcome this obstacle, we propose using a data-driven
contrast enhancement technique kept in check by the CGO sinogram.

We search for a contrast enhanced (corrected) σCE, such that the values
σ(z) are stretched or damped according to the resulting error in CGO sino-
gram. We utilize a two parameter model and consider values greater and
lower 1 independently, where 1 is the value near the boundary. For that let

f(z) := σAT(z)− 1,

denote the difference between the conductivity after AT flow and the con-
stant 1. Recall the a priori constants c and C known to bound the conduc-
tivity 0 < c ≤ σ(z) < C. In practice, such ballpark bounds are readily avail-
able. For example, in chest imaging, using an applied current with frequency
100 kHz, internal conductivities range from around 0.02 Siemens/meter (e.g.
fat) to 0.71 Siemens/meter (e.g. heart tissue) [12].

Denote by m and M the following minimum and maximum values

m := min
z∈Ω

f(z), M := max
z∈Ω

f(z),

assuming these values are nonzero. Define the scaling function fs,t for the
scaling parameter (s, t) ∈ [0, 1]2 by

fs,t(z) =

{
s f(z)m (c− 1) for z satisfying f(z) < 0

t f(z)M (C − 1) for z satisfying f(z) ≥ 0

and set

(5.1) σs,t(z) := 1 + fs,t(z).

The optimal contrast enhanced conductivity σCE within the bounds c
and C is then determined by minimizing the CGO sinogram error over the
scaling parameter (s, t) ∈ [0, 1]2, i.e.

(5.2) (s0, t0) := argmin
(s,t)∈[0,1]2

{
‖Sδσ(θ, ϕ, r)− Sσs,t(θ, ϕ, r)‖2L2(T2)

}
,

where Sδσ(θ, ϕ, r) is the CGO sinogram corresponding to the noisy measure-
ment of σ, and Sσs,t(θ, ϕ, r) is computed from σs,t. Then (5.1) is used to
define

σCE(z) := σs0,t0(z).

Various algorithms are available to find an approximation to the optimal s0
and t0 in (5.2). In this introductory work we apply a derivative free pattern
search algorithm which is known to be stable in the presence of noise: the
DIRECT (DIviding RECTangles) pattern search for global optimization
[24, 17].

In Figure 6 we see clear evidence that minimizing with respect to the
CGO sinogram is advantageous to the DN map for preserving important
image features. The figure shows the heart and lungs test problem with
conductivity reconstructed by the D-bar algorithm applied to noisy EIT
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measurements (left) and the optimal contrast-enhanced images chosen by
minimizing the error of CGO sinogram (middle) and DN map (right) to
the measured data. Clearly, the image chosen by the CGO sinogram mini-
mization more accurately portrays the original than the one chosen by the
DN map. Even though both solutions were able to minimize the l1-error to
the true phantom, from the introductory example in Figure 1, the features
preserved differ immensely (i.e. the heart is barely visible in the DN guided
minimization).

D-bar CGO DN

Error 15.11% Error 14.72% Error 15.05%

Figure 6. Comparison of contrast enhanced solutions on
noisy data. Left: initial D-bar reconstruction with relative
l1-error 15.11% to the original phantom. Middle: solution
chosen by minimal CGO sinogram error, relative l1-error
14.72% to the original phantom. Right: solution with mini-
mal error in DN maps, relative l1-error 15.05% to the original
phantom.

6. A Data-Driven Edge-Preserving D-bar Algorithm

The aim of this paper is to combine the strengths of each the methods de-
scribed above in Sections 2-4, with the data-driven contrast enhancement of
Section 5. We compute the reconstruction of the conductivity with the
regularized D-bar method and reintroduce edges by a data-driven post-
processing of the image. The post-processing is monitored by the CGO

sinogram error which incorporates geometric information about the recon-
struction. We thus propose the following Data-Driven Edge-Preserving D-
bar Algorithm:

Step 1: Fix R > 0 and compute the regularized D-bar reconstruction σR

using the D-bar algorithm described in Section 2.

Step 2: Fix a radius r located in the stable disc: R > r > 0.
(i) Compute the CGO sinogram S

δ
σ(θ, ϕ, r) from the original noisy

data Λδ
σ by solving the boundary integral equation (2.1) for

ψδ(z, k) = eikzµδ(z, k) and setting

S
δ
σ(θ, ϕ, r) = µδ(eiθ, reiφ)− 1.

(ii) Calculate the CGO sinogram SσR(θ, ϕ, r) for the D-bar image.
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(iii) Record the relative CGO sinogram error

E0 :=
‖Sδσ(θ, ϕ,R)− SσR(θ, ϕ,R)‖L2(T2)

‖Sδσ(θ, ϕ,R)‖L2(T2)
.

Step 3: Reintroduce edges to σR via minimization of the Ambrosio-Tortorelli
functional by solving the gradient descent equations (3.3).
(i) Initialize the constants β, α and ρ.
(ii) Calculate the initial approximation for the auxiliary function as

v0 = g(|∇σR|2) defined by (3.4).
(iii) Choose a time step t and begin solving (3.3) iteratively.

Step 4: Check the flow every J , e.g. J = 5, time steps as follows. For the
j-th check:
(i) Denote the image to be checked σAT

j .

(ii) Determine σCE

j , the optimal contrast enhanced version of σAT

j

using the CGO sinogram optimization method described in Sec-
tion 5.

(iii) Record the CGO sinogram error Ej for σCE

j .

(iv) If Ej < Ej−1, return to the AT flow with σAT

j (the non-contrast

enhanced version) and repeat steps (i)-(iii). If not, or if a max-
imum number of iterations Jmax is reached, set

σNEW (z) := σCE

j (z)

and the algorithm is complete.

7. Computational results

We tested the algorithm on simulated noisy EIT measurement data for test
cases of potential interest for the medical and industrial communities.

To simulate the EIT measurements, we solved the Neumann problem
corresponding to the conductivity equation

∇ · σ∇u = 0, z ∈ Ω ⊂ R
2

σ ∂u
∂ν = φj , z ∈ ∂Ω,

for j = −16, . . . ,−1, 1, . . . , 16, representing 32 linearly independent current
patterns. In this paper Ω is the unit disc, and we used the Fourier basis
functions

φj

(
eiθ
)
=

1√
2
eijθ, z = eiθ ∈ ∂Ω .

The matrix approximation to the DN maps Λσ and Λ1 (the DN map
corresponding to a uniform unit conductivity) were computed for each test
problem using the standard methods described in [30]. The numerical im-
plementation of the regularized D-bar method was first fully described in
[27] and later explained in more detail in [30, Section 13.2], including freely
available Matlab code.

A discussion of a numerical implementation with finite differences of the
AT flow can be found in [15]. In this study, we used the Matlab integrated
PDE solver for the equations (3.3) and for each test problem below the
choice of parameters is given.
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Additional zero-mean random Gaussian noise was added to the DN matrix
Λσ so that

(7.1) ‖Λσ − Λδ
σ‖H1/2(∂Ω)→H−1/2(∂Ω) ≤ δ

using the methods described in [27]. While types of noise and their mag-
nitudes vary among EIT devices, a benchmark of around 0.01% has been
obtained [10].

The resulting CGO sinogram and conductivity errors stated below are
given as relative errors. The relative error of CGO sinograms corresponding
to the original conductivity σ and to some reconstruction σd was measured
by

(7.2)
‖Sδσ(θ, ϕ,R)− Sσd

(θ, ϕ,R)‖L2(T2)

‖Sδσ(θ, ϕ,R)‖L2(T2)
.

Similarly we measured the relative error of the reconstructed conductivities
to the known original via

(7.3)
‖σ − σd‖Lp(Ω)

‖σ‖Lp(Ω)

with p = 1 or p = 2. We note that (7.2) can be measured for real data cases,
contrary to (7.3) for which the knowledge of the correct conductivity σ is
needed.

7.1. A Heart-and-Lungs Phantom. The leftmost image in Figure 7 shows
our piecewise constant phantom. The lungs have conductivity 0.5, the heart
has conductivity 2, and the background has unit conductivity.

The D-bar reconstruction was obtained using a truncation radius of R = 4
in the scattering data. The D-bar method allows computing the reconstruc-
tion at arbitrary points in the z-plane, and we chose to reconstruct directly
at the points of the FEM mesh (of 33025 elements) to be used in the AT
flow. We have added additional noise of amplitude δ = 0.005 to the DN map
satisfying (7.1), and corresponding to 0.5% noise far surpassing the 0.01%
benchmark for measurement noise. The D-bar reconstruction is shown in
the middle image in Figure 7; it has a relative CGO sinogram error of 20.3%.

The AT flow (Step 3) was computed with parameters

α = 200, β = 0.1, ρ = 0.1,

and the contrast enhanced solution σCE was computed every fifth iteration
using the CGO sinogram with r = |k| = 2, well within the observed reliable
region for the regularized D-bar method. The boundary constants were
roughly chosen as c = 0.1 and C = 4. A summary of the obtained solutions
is illustrated in Figure 8.

The optimal solution was obtained at iteration 45 with a relative error in
CGO sinogram of 17.28%. Figure 9 displays the error in CGO sinogram as
well as the error of reconstruction to the true conductivity throughout the
evolution of the AT flow.
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True conductivity D-bar Improved

Figure 7. Illustration of original Heart-and-Lungs phan-
tom with the initial D-bar reconstruction (truncation radius
R = 4) and the contrast-enhanced diffused solution of the
Ambrosio-Tortorelli functional at iteration 45.
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Figure 8. Illustration of the minimization process of the
Ambrosio-Tortorelli functional for three different stages, in-
cluding the contrast enhanced solutions with smallest error
in CGO sinogram.
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Figure 9. Convergence plot of the AT minimized solutions
CGO sinograms in relative l2-error to the true measurement
(Left) and the relative l1-error of the reconstructions to the
true Heart-and-Lungs conductivity (Right).
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7.2. An Industrial Pipe Phantom. The second test case is an example
from the oil industry. It roughly models a pipe with oil (top layer, conduc-
tivity 1.2), water (middle layer, conductivity 2.0), and sand (bottom layer,
conductivity 0.3) similar to the test problem of [3].

The initial D-bar reconstruction is computed on the same mesh with a
truncation radius of R = 6 and additional noise of 0.01% in the measured
DN map. The parameters for the AT flow and contrast enhancement were
chosen the same as in the previous example. The CGO sinograms were
computed with a small radius of |k| = 0.5 far within the reliable region.

The minimization of the CGO sinogram error with the proposed algorithm
did not converge and hence the algorithm stopped at the maximum number
of iterations chosen as Jmax = 200.

The error in the CGO sinogram has been halved from 17.53% in the origi-
nal D-bar reconstruction, to 8.73% in the improved reconstruction obtained
with the new algorithm (left plot of Figure 11). The right plot shows the
errors for contrast enhanced versions of the conductivities after the AT flow.
Their error increased, after an initial decrease, from 15.09% of the D-bar re-
construction to 15.32% of the reconstruction obtained by the AT flow after
200 iterations and 18.35% of the corresponding contrast enhanced solution.
However, we point out that in practice such a comparison (right plot of
Figure 11) is not possible as the true conductivity is unknown, and only the
left plot is possible, where in fact we see a clear decrease in the CGO error.

8. Discussion

The heart-and-lungs phantom of Section 7.1 is of particular interest, since
it represents, an admittedly simplified version of, a major application of elec-
trical impedance tomography in the medical field: monitoring the blood and
air flow in a patient’s heart and lungs. With the proposed algorithm we were
able to clearly distinguish the left and right lung as well as introduce clear
edges, see Figure 7. As discussed above, a level of 0.5% noise is reasonably
high for EIT measurements and hence gives a good impression of how the
algorithm behaves with noise corrupted data. The original D-bar recovered
conductivity (see the middle image in Figure 7) has good contrast but lacks
sharpness, as is typical for D-bar reconstructions.

A summary of the AT flow is illustrated in Figure 8. Notice that the AT
flow gradually divides the two lungs, and that the separated areas converge
to constant values. As seen in the right plot of Figure 9, the AT flow (blue
line) clearly minimizes the l1-error of the evolved conductivity to the true
conductivity. Furthermore, the behavior of its corresponding CGO sino-
gram error (blue plus sign markers in the left plot), initially decreasing but
followed by a sharp increase, reinforces the need for a contrast enhancement
step. Note that the CE solutions have a similar behavior in both CGO sino-
gram error and the reconstruction error of the conductivity, and that the CE
evolved conductivities have smaller relative errors to the true conductivity
than their non CE counterparts.

The second test case (Section 7.2) is an example from the oil industry.
When measuring a pipe with oil (top layer), water (middle layer), and sand
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True conductivity D-bar

AT iteration 200 Contrast enhanced

Figure 10. Illustration of original pipe phantom with the
initial D-bar reconstruction (Truncation radius 6) in the top
row. Reconstruction after 200 iterations of the AT flow (Bot-
tom left) and the corresponding contrast enhanced solution
(Bottom right).
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Figure 11. Convergence plot of the AT minimized solu-
tions CGO sinograms in relative l2-error to the true mea-
surement (Left) and the relative l1-error of the reconstructed
pipe conductivity (Right).
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(bottom layer) one wants to know how much oil is transported in the pipe,
making it important to distinguish the levels of each substance clearly, i.e.
their edges. The new reconstruction has clear and sharp edges dividing the
different substances and one can tell easily how much of each substance is
present in the pipe. As one can see in Figure 10, the structure of the pipe
has been reintroduced to the reconstruction, delivering a realistic view of
the imaged target.

The right plot in Figure 11 shows that the error in reconstructed conduc-
tivities did not decrease as nicely as in the Heart-and-Lungs phantom. In
fact, the relative l1 conductivity reconstruction error increased from 15.09%
of the D-bar reconstruction to 18.35% of the contrast enhanced solution of
the last iteration 200 in the AT flow. A reason for the higher error can be
seen in Figure 10, the contrast enhancement increases the conductivity of
the top layer as well as the middle layer, which produces a higher error in
the middle layer. This suggests that more sensitive models for the contrast
enhancement may be needed. Nevertheless, the information contained in
the contrast enhanced solution is far more useful for evaluation of the target
and suggests that the CGO sinogram contains more information about the
reconstruction’s geometry.

9. Conclusions

A novel edge-preserving D-bar method with a data-driven contrast enhance-
ment was introduced and tested on simulated EIT measurement data. The
algorithm works as advertised by both sharpening and enhancing the con-
trast of the reconstruction, even in the presence of additional noise added
to the Dirichlet-to-Neumann boundary measurements.

Key to the approach is the invention of the CGO sinogram, a more reli-
able and geometrically transparent quantity than the DN map. The CGO

sinogram provides an important breakthrough towards new uses of this non-
linear data, and based on our findings we are excited what further theoretical
analysis on the stability of the CGO sinogram will reveal.

Our results also have implications outside the realm of D-bar methods.
The traditional regularization approach for EIT reconstructions is to find
the minimizer of a functional of the form

(9.1) ‖Λδ
σ − Λσ′‖Y + α‖σ′‖X ,

where the X norm corresponds, for instance, to Tikhonov or Total Variation
regularization, and 0 < α <∞ is a regularization parameter. Replacing the
traditional data fidelity term in (9.1) by an analogous term based on the
CGO sinogram leads to the functional

(9.2) ‖Sσ(θ, ϕ, r)− Sσ′(θ, ϕ, r)‖2L2(T2) + α‖σ′‖X ,

where T2 denotes the two-dimensional torus. Based on the evidence seen in
Figures 4 and 5, we strongly suspect that using (9.2) would lead to supe-
rior reconstructions compared to (9.1). A similar comment applies to the
likelihood distributions used in Bayesian inversion approaches for EIT.
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