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ABSTRACT

Current model-based variational methods used for solving the non-
linear material decomposition problem in spectral computed tomog-
raphy rely on prior knowledge of the scanner energy response, but
this is generally unknown or spatially varying. We propose a two-
step deep transfer learning approach that can learn the energy re-
sponse of the scanner and its variation across the detector pixels.
First, we pretrain U-Net on a large data set assuming ideal data,
and, second, we fine-tune the pretrained model using few data corre-
sponding to a non-ideal scenario. We assess it on numerical thorax
phantoms that comprise soft tissue, bone and kidneys marked with
gadolinium, which are built from the kits19 dataset. We find that the
proposed method solves the material decomposition problem with-
out prior knowledge of the scanner energy response. We compare
our approach to a regularized Gauss-Newton method and obtain a
superior image quality.

Index Terms— Spectral CT, inverse problem, deep learning,
transfer learning

1. INTRODUCTION

The new generation of spectral computed tomography (SCT) scan-
ners include photon-counting detectors, which count single photons
and resolve their energy [1]. With this extra dimension, SCT allows
for material decomposition, which opens up new diagnostic possi-
bilities [2].

Material decomposition is a nonlinear inverse problem [3].
State-of-the art for solving this problem is based on variational ap-
proaches [4, 3] but the disadvantage of these techniques is that they
rely on accurate knowledge of the forward model, including the
scanner energy response, which is generally unknown.

Deep learning-based methods are expected to overcome these
hurdles. On the one hand, they can learn the inverse problem with-
out a priori assumptions about the scanner energy response. On the
other hand, deep convolutional neural networks (CNN) have shown
outstanding results in several image processing tasks [5] and are
also promising for learning several inverse problems [6, 7, 8]. Deep
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learning has been also proposed for solving the material decomposi-
tion in the image domain [9].

The success of CNNs depends in part on the availability of large-
scale annotated data sets [10]. However, in medical imaging and
specifically in emerging imaging modalities such as spectral CT data
are very limited. For this, transfer learning appears as relevant tech-
nique for medical imaging [11].

In this work we propose a deep learning approach in the pro-
jection domain based on a U-Net architecture [12] and a transfer
learning technique that can learn the energy response and compare
it to a previously used regularized Gauss-Newton (RGN) method [4]
using numerical human thorax phantoms.

2. METHODS

2.1. Forward model

We assume a 2D sensor with P pixels and I energy bins and an
object with V voxels made of M materials. We image the ob-
ject under Θ projections. Let s = (s1

1,1, . . . , s
θ
i,p, . . . , s

Θ
I,P )> be

the measurement vector, where sθi,p is the data measured in the i-
th energy bin at the p-th pixel for the θ-th projection, and ρ =
(ρ1,1, . . . , ρm,v, . . . , ρM,V )> be the (unknown) mass densities vec-
tor, where ρm,v is the mass density for the m-th material at the v-th
voxel. We denote

s = G(ρ) (1)

where G represents the forward model that maps ρ onto s. The goal
of SCT is to invert (1).

The forward model G can be seen as the composition of the lin-
ear X-ray transform and a non-linear spectral mixing operator. The
X-ray transform X applies to each material independently, i.e.,

am = X(ρm), 1 ≤ m ≤M (2)

where ρm = (ρm,1, . . . , ρm,v, . . . , ρm,V )> and
am = (a1
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m,P )> represent mass density and

projected mass density for the m-th material, respectively. Spectral
mixing applies to each view independently, i.e.,

sθ = F (aθ), 1 ≤ θ ≤ Θ (3)

where aθ = (aθ1,1, . . . , a
θ
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following non linear mixing [13]
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where E is the energy range of the source, n is the source energy
spectrum, di,p is the detector response function at the p-th pixel for
the i-th bin, and τm is them-th material mass attenuation coefficient.

2.2. Image reconstruction

We solve the inverse spectral CT image reconstruction problem in
two steps: material decomposition and tomographic reconstruction.
Material decomposition is the inversion of (3), which is done projec-
tion by projection, while tomographic reconstruction is the inversion
of (2). In this work, we consider the material decomposition problem
with two different approaches, as described below. Assuming paral-
lel geometry, we perform tomographic reconstruction using filtered
back-projection algorithm with Ramp filter.

2.2.1. Material decomposition with a variational method

Using a variational framework, material decomposition has been
previously formulated as the minimization of the following cost
function [4]:

C(aθ) =
1

2
‖sθ − F (aθ)‖2Wθ + α

∑
m

Rm(aθ), 1 ≤ θ ≤ Θ (5)

where the data fidelity term is a weighted least square functional to
approximate a Poisson distribution,W θ = diag(1/

√
sθ) is a weight-

ing matrix, α is a regularization parameter, andRm accounts for spe-
cific material regularization. We chose second-order and first-order
Tikhonov regularization for soft tissue and bone, respectively, and
Huber functional for contrast agent as suggested in [4]. Cost func-
tion (5) is efficiently minimized by using Gauss Newton algorithm
(RGN); MATLAB code for RGN is available from Spectral X-ray
image reconstruction SPRAY toolbox [14].

2.2.2. Material decomposition by deep learning method

Deep learning has been recently proposed for learning inverse prob-
lems [15, 16]. In this work, we want to learn

hβ : sθ 7→ aθ (6)

where β indicates the parameters of the neural network. We use a
U-Net architecture [12] that consists of 14 hidden layers and three
levels as shown in figure 1.

Fig. 1: U-Net architecture. Input is a stack of photon counting pro-
jections (I energy bins) and output is a stack of the decomposed
material projection images (M materials) for a projection angle.

Learning means finding the parameters β that minimizes the fol-
lowing loss function

L(β) =

N∑
n=1

‖h(sn;β)− an‖2 =

N∑
n=1

M∑
m=1

‖hm(sn;β)− anm‖2,

(7)
where (sn, an) are input-output vector pairs (3) that can be reshaped
into input-output array pairs of size (Px × Py × I ,Px × Py ×M ),
N is the number of projection images in the training set, and each

projection image is of size Px × Py . Minimization of (7) was done
with Adam method under TensorFlow, with learning rate 10−4 and
batch size of 16. Training and test losses were computed during
training and early stopping was adopted to avoid overfitting. Both
input and output projections are normalized before training.

2.3. Numerical phantom data

Numerical human thorax phantoms are comprised of soft tissue,
bone and kidneys marked with gadolinium (Gd) and are built from
CT volumes obtained from the kits19 challenge data set [17]. The
distribution of concentration of gadolinium within the kidneys is
generated as homogeneous, where the concentration for each phan-
tom is obtained by sampling from a normal distribution centered in
0.1 g.cm−3 and standard deviation of 0.02 g.cm−3. Phantoms have
640×640×100 pixels and after projection each data set consists of
360 projections over a 180 angle span with size 909× 100 detector
pixels. Spectral CT data is simulated using SPRAY toolbox with
the modeling parameters (n0(E), τm(E), di(E) (4)) used in [4].
Noisy data is considered by assuming a Poisson distribution for a
total number of photons N0 = 107.

To assess the effect of model deviations, we perturb the detector
response function considering a pixel-dependent energy shift

d̃i,p(E) = di(E −∆Ei,p), (8)

where ∆Ei,p is the energy shift at pixel p and bin i. This shift is sam-
pled from a normal distribution with a standard deviation of 3 keV.
The data simulated with the ideal energy response di(E) (which is
constant across detector pixels) are referred to as ideal, while the
data simulated with the perturbed energy response d̃i,p(E) are re-
ferred to as non-ideal.

For the ideal case, we split phantoms in 40 phantoms for train-
ing, 10 for validation and 10 for test, where there are 360 projection
images per phantom. We pretain U-Net on ideal data and compare
it to RGN. In order to assess the effect of non-ideal data, we assess
U-Net on a non-ideal version of the test data. Then, in order to ac-
count for deviations from ideality conditions, we applied U-Net with
Transfer Learning (U-Net+TL), for which we fine tune the pretrained
network (on ideal data) using one phantom for non-ideal data.

3. RESULTS

3.1. Material decomposed projections

Figure 2 shows phantom and decomposed projections. For an ideal
detector, RGN leads to excessively smooth images for α = 1.4;
smaller values of α led to noisier images. Hence, RGN presents a
strong trade-off between noise and regularization. On the contrary,
U-Net removes noise while maintaining image quality.

For a non-ideal detector, both methods fail to provide accurate
material decomposition (results shown only for U-Net). Assuming
perfect data conditions translate into noisy projections. U-Net with
transfer learning leads to a significantly reduction in noise.

3.2. Tomographic reconstructed images

Figure 3 shows phantom and tomographic reconstructed images. For
ideal data, RGN leads to loss of details in soft tissue and bone. U-
Net is able to decrease noise while maintaining image quality. For
non-ideal data, U-Net presents ring artifacts and large crosstalk be-
tween soft tissue and Gd. However, U-Net+TL, which accounts for



Fig. 2: Left: Phantom and material decomposed projections with RGN and U-Net for ideal data. Right: Phantom and material decomposed
projections with U-Net with and without transfer learning for non-ideal data. Projection correspond to an angle view of 0◦.

Fig. 3: Left: Phantom and tomographic reconstructed images for RGN and U-Net for ideal data. Right: Phantom and reconstructed images
for U-Net with and without transfer learning for non-ideal data.

deviations from the ideal detector assumption, leads to reduction of
most artefacts.

Figure 4 shows quantitative results. For ideal data, U-Net leads
up to a three fold reduction on MSE on decomposed projections and
reconstructions with respect to RGN on the three materials (MSE
on the projections not shown). With respect to quantification of Gd,
errors were less than 2% with both methods. RGN provides lower
mean quantification error but larger variance is present in the his-
togram of Gd image (the latter not shown).

For non-ideal data, U-Net leads up to 4-fold increase in MSE and
20-fold increase in quantification error. Nevertheless, the proposed
U-Net+TL yields 4-fold error reduction.

4. DISCUSSION

We have proposed a deep learning approach for solving the mate-
rial decomposition problem that can learn the detector response of a
SCT scanner. The approach is based on a U-Net architecture and a
transfer learning approach to account for non ideal data.

For ideal data, U-Net provided superior image quality than
RGN. This can be explained by the fact that U-Net can learn im-
plicitly the probability distribution of the decomposed materials. In
fact, Bayesian deep learning interprets supervised learning as recov-
ering the posterior and it approximates the conditional mean when
using the MSE loss [18]. This is particularly relevant for material

decomposition in the projection domain, as in this case the choice of
prior distributions is less clear. A second disadvantage of variational
methods is the high dependence on the regularization parameter.

In terms of quantification of gadolinium, for ideal data, both
methods led to less than 2 % quantification error but RGN led to
lower error than U-Net. However, inspection of the histogram re-
veals that RGN presents higher variance. High quantification per-
formance for RGN could be expected as we have considered a low
noise scenario and a perfect forward model for RGN. We found that
RGN performance decreased for higher noise settings (results not
shown).

For non ideal data, methods failed to provide satisfactory ma-
terial decomposition, with the apparition of large ring artefacts and
a 20-fold increase in quantification error. Ring artefacts arise from
bias errors in the detector pixels. To mitigate these errors calibration
is generally performed in practice. Nevertheless, even after calibra-
tion, errors may remain. Here, data discrepancy was modelled as
a perturbation of the detector response where the size of the per-
turbation can be considered as moderate. Lower errors should be
encountered in practice after recalibration.

To account for non ideal data, we proposed a transfer learning
methodology based on pretraining on numerical phantoms and then
fine tuning with one new data set corresponding to non-ideal data.
These results show that few data are needed to correct for model de-
viations. Fine tuning can be understood as recalibrating the model.



Fig. 4: MSE of reconstructed images, for soft tissue (S), bone (B)
and Gd (G), and Gd quantification error. Left: U-Net (UN) vs RGN
(GN). Right: UN vs UN with transfer learning (UNTL).

In practice, a first recalibration could require more data and compu-
tational training time yet subsequent recalibrations should need less
resources.

There are different approaches to transfer learning. It is common
routine during the fine tuning step to freeze some layers by fixing the
weights to those values obtained in the pretraining step. However,
we preferred to use the pretraining weights as an initial estimate but
let them freedom to change [19]. One reason is that frozen layers are
generally the first ones, which capture lower level features, but in our
case it could be expected that the first layers are actually those that
would overtake the recalibration. In any case, pretraining has been
shown to have a regularization (prior) effect, making the solution to
lie in a specific region of the solution space, with better generaliza-
tion properties [19], so it seems ideal for spectral CT for which data
are limited.

This work is subject to few limitations. We have assessed the ef-
fect of non-ideal data by perturbing the detector response by a shift
in energy. While this model may not be completely exact in practice,
it shows the effect of mismodelling the energy response of the scan-
ner and that the proposed approach can learn these type of model
deviations. With regard to the fine tuning step, it requires a new
’experimental’ data set corresponding to non-ideal data. In practice,
this new data set could be an experimental phantom, which proper-
ties are known. In this work, we consider a thorax phantom, which is
not entirely realistic, but demonstrates the method’s capabilities and
shows that few data are needed for recalibration. Future work will
also consider experimental data.

In conclusion, deep learning has a great potential for SCT as it
allows for material decomposition without prior knowledge of the
scanner energy response and provides superior image quality than
previous variational approaches.
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