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Abstract

Motivation: Improved DNA technology has made it practical to estimate single nucleotide polymorphism

(SNP)-heritability among distantly related individuals with unknown relationships. For growth and

development related traits, it is meaningful to base SNP-heritability estimation on longitudinal data due to

the time-dependency of the process. However, only few statistical methods have been developed so far

for estimating dynamic SNP-heritability and quantifying its full uncertainty.

Results: We introduce a completely tuning-free Bayesian Gaussian process (GP) based approach for

estimating dynamic variance components and heritability as their function. For parameter estimation, we

use a modern Markov Chain Monte Carlo (MCMC) method which allows full uncertainty quantification.

Several data sets are analysed and our results clearly illustrate that the 95 % credible intervals of the

proposed joint estimation method (which "borrows strength" from adjacent time points) are significantly

narrower than of a two-stage baseline method that first estimates the variance components at each time

point independently and then performs smoothing. We compare the method with a random regression

model using MTG2 and BLUPF90 softwares and quantitative measures indicate superior performance of

our method. Results are presented for simulated and real data with up to 1000 time points. Finally, we

demonstrate scalability of the proposed method for simulated data with tens of thousands of individuals.

Availability: The C++ implementation dynBGP and simulated data are available in GitHub

(https://github.com/aarjas/dynBGP). The programs can be run in R. Real datasets are available in QTL

archive (https://phenome.jax.org/centers/QTLA).

Contact: mikko.sillanpaa@oulu.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Heritability, the proportion of phenotypic variation attributable to genetic

factors, is a fundamental parameter in population and quantitative genetics

(Visscher et al., 2008). The aim in narrow-sense heritability estimation is

to separate the variance of the trait into additive genetic and environmental

variance components such that their sum equals the total variance of

the trait. Generally, heritability is a population-specific parameter which

can be estimated either using (i) linear mixed model (LMM) techniques

(Henderson, 1984) or with (ii) multi-locus association (MLA) approaches

(Sillanpää, 2011). In LMMs, information of the (additive) genetic

relationships between the individuals in the population must be available,

which can be determined either from known pedigree or from genomic

data (single nucleotide polymorphism, SNP), while in MLA models,

heritability can be estimated from genomic data. In LMMs, the trait

variation is assumed to be controlled by a high number of small effect

genes (polygenic), whereas MLA models assume that there are only few

major genes behind the trait variation. We note, that in case heritability is

estimated from genomic data, it is called SNP-heritability, and we will from

now on refer by heritability specifically to narrow-sense SNP-heritability.

It is well known that heritability of a trait may depend on

measurement time, age, environmental conditions (like temperature), or
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Fig. 1. (Top panel) Continuous smoothing over time points can be induced into one of three

possible layers in the LMM hierarchy: either in the variance component layer (A), genetic

value layer (B), or phenotype layer (C). (Bottom panel) Our suggested LMM structure,

where continuous smoothing over time points is induced on the genetic- and residual

variance components.

size (Stinchcombe et al., 2012). In all such cases, it is natural to consider

and estimate heritability as a dynamic function. In particular, functional

variation in heritability is motivated by the fact that environmental changes

may affect the environmental variance, and genes that control traits

can activate or deactivate (Bryois et al., 2017), which then may affect

the genetic variance. In general, this kind of dynamic modelling of

biological processes is a fast growing field thanks to modern data collection

techniques, see e.g. Moore et al. (2013) and Li and Sillanpää (2015).

However, the number of statistical methods and associated (easy-to-use

and publicly available) software packages to estimate dynamic heritability

is still limited. To discuss this further, let us first put available methods

into context. For approaches in the multivariate LMM framework we have

the following options.

i.) A simple approach: Considers all time points as dependent traits and

estimates their trait-specific genetic variances. This multi-trait model

estimates variances jointly but does not apply any smoothing over time

points (Henderson and Quaas, 1976; Lee and van der Werf, 2016).

ii.) Smoothing at phenotype level (Figure 1C): fits a linear or nonlinear

function over phenotypic time points, and then estimates latent-trait

heritability influencing each parameter of that function using univariate

or multivariate LMMs (e.g., Canaza-Cayo et al., 2015).

iii.) Smoothing at breeding value level (Figure 1B): fits a linear or

non-linear function over time in genomic breeding values (and

possibly residual effects, i.e. permanent environmental effects). A

common approach referred to as random regression (Schaeffer, 2016)

(http://animalbiosciences.uoguelph.ca/%7Elrs/BOOKS/rrmbook.pdf),

(Campbell et al., 2018), also requires estimation of the residual

covariance matrix if the permanent environmental effects are not

smoothed.

iv.) Smoothing at variance component level (Figure 1A): If the residual

variance is also smoothed, the residual covariance matrix can be left

out of the model. Such an example is given by a spline-based method

He et al. (2016, 2017) which is restricted to only twin data.

In comparison, for MLA approaches we have the two possibilities.

v.) Smoothing at phenotype level: fits a linear or nonlinear function

over phenotypes, and then estimates latent-trait heritability for trend

parameters (e.g., intercepts, slopes), by either using univariate or

multivariate methods (see eg. Gee et al., 2003; Heuven and Janss,

2010; Sillanpää et al., 2012; Li et al., 2014).

vi.) Smoothing at quantitative trait locus (QTL) effect level: fits

a linear or non-linear function over time to QTL effects. In

particular, these methods have been developed for QTL mapping

of function-valued traits, but can also be applied for SNP-

heritability estimation. Examples are varying-coefficient models such

as Li and Sillanpää (2013) and Vanhatalo et al. (2019). Considering

the residual covariance structure in these models is recommended.

Dynamic modelling of biological phenomena can be beneficial for

a number of reasons. For instance, by improving the precision of the

estimation (Li and Sillanpää, 2013). This is due to the simple fact that, as

with any statistical modelling, a larger data set leads to increased precision,

and naturally the amount of data increases with the number of measurement

points. More importantly, if the nature of a phenomenon is dynamic, it

is only rational to model the phenomenon dynamically and exploiting

information content over time. Finally, there is a heated debate around

heritability estimation as to why the current analysis methods are leading

to a noticeable gap (known as missing heritability) between heritability

estimates from SNP and pedigree / twin data (see e.g., Eichler et al., 2010;

Gibson, 2012; Young, 2019). One important contributor to this is the time-

dependent nature of heritability, which our method aims to address.

One way to induce smoothing in the model (to model dynamic

phenomena) is given by Gaussian processes. These are random processes

whose degree of smoothness can be controlled by varying a set of

parameters. In particular, they are appealing because of their analytical

properties: with certain conjugacy structure the end result is given as an

easy-to-calculate formula (Rasmussen and Williams, 2006). Furthermore,

Gaussian processes have been successfully utilised in genetics before, for

example by Vanhatalo et al. (2019), where associations between molecular

markers and function-valued traits were studied. Also, the idea of using

Gaussian processes in modelling dynamic biological processes is not new.

For example, Pletcher and Geyer (1999) and Jaffrézic and Pletcher (2000)

suggested that the genetic breeding values and environmental terms of the

phenotype in LMM could be viewed as Gaussian processes. They also

considered multivariate phenotypes by modelling the covariance function

of a process through a parametric representation, which reduces the number

of parameters in the model. In fact, this approach differs from ours, because

we view the variance components of the LMM as Gaussian processes,

which is similar to He et al. (2016, 2017), where variance processes were

modelled with splines.

In this paper we specifically consider the Bayesian framework of

statistical modelling. This means that the statistical inference is not only

based on the measurement data and the statistical model, but also on prior

assumptions and information about the subject (Gelman et al., 2013). For

example, a common assumption in many research fields about dynamic

processes is given by their smoothness, i.e. values at neighbouring time

points are expected to be closer than at time points further apart. To estimate

the parameters in Bayesian models, it is common to use Markov Chain

Monte Carlo (MCMC) simulation methods (Robert and Casella, 2009),

but since Gaussian process models usually have a high number of highly

correlated parameters, efficient MCMC sampling is difficult. Thus, in

addition to the traditional Metropolis–Hastings algorithm, we use the state-

of-the-art method of elliptical slice sampling (Murray et al., 2010), which

has shown to perform well in Gaussian process models.

In addition to dynamic heritability estimation, the aim of this paper

is to illustrate the difference in the uncertainty of the estimates of joint

and independent modelling of dependent traits. If a trait is measured

longitudinally over time, the different measurements can be thought as

individual traits. If there is a dependence between traits, it makes sense to

model them jointly. This dependence can be viewed as increased sample

size because the value of one trait affects the value of the other.
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This paper is organised as follows: In section 2 we present our

proposed model for dynamic heritability estimation based on Gaussian

processes. In addition, we introduce a two-stage method that is used as

a baseline. In section 3, we evaluate our method with two simulated and

two real datasets and compare to a random regression model implemented

with MTG2 (Lee and van der Werf, 2016) and BLUPF90 (Misztal et al.,

2002) softwares and ACEt R-package for estimating dynamic heritability

(He et al., 2017). In section 4 we examine the obtained results, followed

by a discussion in section 5.

2 Methods

We will address the dynamic estimation of heritability by two methods,

a joint estimation and a separated two-stage approach which serves to

illustrate why joint modelling is beneficial. Specifically, the two-stage

method first estimates the posterior means of the variance components and

their credible intervals at every time point individually and subsequently

combines the obtained estimates into smooth curves.

All models in this study are extensions of the basic linear mixed model,

defined as (Henderson, 1984)

y = Xβ +Zu+ ǫ, (1)

where y ∈ R
N is a measurement vector, X is a matrix of fixed effects,

β contains the regression coefficients associated with them and N is the

number of individuals. The matrix Z (in this case Z = I) connects

random effects u ∈ R
N ∼ N (0, σ2

GG) with correct individuals. Here,

σ2
G is the genetic variance and G is the genomic relationship matrix

(defined in detail below). Lastly, ǫ ∈ R
N ∼ N (0, σ2

EI) is the error

term. Since we do not have any fixed effects, we can express the centered

measurement vector as yc = u+ ǫ. We note that the overall covariance

matrix of yc can be written as K = σ2
GG + σ2

EI . Narrow-sense

heritability is then defined as h2 = σ2
G/(σ2

G + σ2
E).

2.1 Genomic relationship matrix

To separate the genetic and environmental variance components,

knowledge of the genetic relations between individuals is needed. A

genomic relationship matrix can be estimated from molecular marker data.

VanRaden (2008) describes the procedure of constructing such a matrix.

First, let M be an N × M genotype matrix where N is the number of

individuals andM is the number of markers. The elements inM are coded

as −1, 0, 1 for homozygote, heterozygote and the other homozygote,

respectively. Second, let pi be the allele frequency of the second allele

at locus i. Then we construct a matrix P with the same dimensions as M

and set the i:th column of P to 2(pi − 0.5). Let Q = M − P . Finally,

we can construct a genomic relationship matrix as

G =
QQ′

2
∑

i pi(1− pi)
. (2)

To reduce the estimation error, we used a shrinkage estimated version

of this matrix, defined in detail by Endelman and Jannink (2012) and

implemented in the R-package rrBLUP (Endelman, 2011). We note that

the estimated genomic relationship matrix G is positive-semidefinite and

hence might not be invertible. However, for our model formulation this

will not be a problem (for more details, see eq. (9)).

2.2 Joint model over time points

To extend the model (1) to the case of longitudinal data, we can use

the Kronecker product denoted by ⊗. The extended model defines a

probability distribution for a data vector ỹc = [yc(1) . . .yc(T )]′ that

can be written as

ỹc = ũ+ ǫ̃, ỹc, ũ, ǫ̃ ∈ R
NT (3)

where ũ = [u(1) . . .u(T )]′ ∼ N (0, diag(σ2
G(1), . . . , σ2

G(T )) ⊗

G) contains all breeding values and ǫ̃ = [ǫ(1) . . . ǫ(T )]′ ∼

N (0, diag(σ2
E(1), . . . , σ2

E(T )) ⊗ I) contains all error terms from

individual time points consecutively and T is the number of time

points. The overall covariance matrix for ỹc can be written as K̃ =

diag(σ2
G(1), . . . , σ2

G(T )) ⊗ G + diag(σ2
E(1), . . . , σ2

E(T )) ⊗ I . The

variance component vectors can now be estimated with a Bayesian

approach by setting suitable priors for them. It is worth noting that

this model structure implies that all covariances across time (within

and between individuals) are ignored. For the rapid performance of the

algorithm this assumption is crucial. It is in the priors of the variance

component vectors where we assume dependence over time (see Figure 1,

bottom panel). This is a fundamental difference compared to for example

Pletcher and Geyer (1999) who model the dependence on the level of

breeding values. The idea behind our assumption is that the dependence

of neighbouring trait values induces dependence on the variance level.

The priors are based on assumptions about the qualitative features

of the variance component functions, namely their continuity and

smoothness. Due to the aforementioned reasons, we assume that the

variance values at neighbouring time points are on average closer than at

time points further apart. To formulate such assumptions mathematically,

one can use Gaussian processes, fully defined by a mean function

and a covariance function (Rasmussen and Williams, 2006). We write

log σ2
G ∼ GP(0, CG(t, t′)) and log σ2

E ∼ GP(0, CE(t, t′)),
where CG(t, t′) = cov(log σ2

G(t), log σ2
G(t′)) and CE(t, t′) =

cov(log σ2
E(t), log σ2

E(t′)). Logarithms are used to allow negative values

for the processes and the zero mean can be achieved approximately by

suitable translation of the data. For CG and CE , we use the Matérn

covariance function, given by

C(t, t′) = τ2
21−ν

Γ(ν)

(

|t− t′|
λ

)ν

Kν

(

|t− t′|
λ

)

, (4)

where τ2 is the magnitude parameter that controls the overall variance

of the stochastic process, λ is the length scale that governs how fast

the covariance drops with respect to the distance of time points, Γ(·)

denotes the gamma function and Kν(·) the modified Bessel function of

the second kind. The value of ν controls the mean-square differentiability

of the process, which affects its smoothness. We note that for ν =

0.5, 1.5, 2.5, . . ., there exists a simple form for the covariance function.

In this study, we fix ν = 1.5, which means that a sample process is once

mean-square differentiable and we obtain

C1.5(t, t
′) = τ2

(

1 +
|t− t′|

λ

)

exp

(

−
|t− t′|

λ

)

(5)

(Rasmussen and Williams, 2006). This means the process is rather smooth,

but it is also allowed to change rapidly.

A common problem with Gaussian processes is determining values

for the hyperparameters τ2 and λ. In the Bayesian framework one can

set up separate priors for each and estimate them together with the

other unknowns using MCMC. However, it is known that identifiability

issues arise when simultaneously estimating both hyperparameters (Zhang,

2004). Thus, it is common to fix one of them. In our case, we fix τ2 = 1

and scale the data so that the mean of the overall variance over time points

equals 2. This means the mean of the environmental and genetic variance

over time points is 1 if they are equal.

Because our Gaussian process model is nonparametric, we have to

discretise the time axis and define a grid of points where we estimate the

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa199/5809528 by guest on 19 M

arch 2020



4 Arjas et al.

variance components. For simplicity, we estimate the variance components

at the same locations the measurements were taken. This means that the

covariance function C(·, ·) becomes a covariance matrix C. Then we

have for each element in the matrix that [C]ij := C(ti, tj). We note that

a covariance matrix defined this way is dense and computationally heavy

to operate with. Hence we use a sparse approximation for the inverse of

the covariance matrix (Roininen et al., 2014), discussed in more detail in

the supplementary material.

The model can be written in hierarchical form as

ỹc|σ
2
E ,σ2

G ∼ N (0, K̃),

logσ2
E |λE ∼ N (0,CE),

logσ2
G|λG ∼ N (0,CG),

log λE ∼ N (µλ, ζ
2
λ),

log λG ∼ N (µλ, ζ
2
λ).

(6)

By Bayes’ formula, the unnormalised posterior density can be expressed

as

p(σ2
G,σ2

E , λE , λG|ỹc) ∝

pN (ỹc|0, K̃)pN (logσ2
G|0,CG)pN (logσ2

E |0,CE)

pN (log λE |µλ, ζ
2
λ)pN (log λG|µλ, ζ

2
λ),

where pN refers to the multinormal density.

In practice, with this parameterization we observed poor mixing

of the hyperparameter chains. Hence, we employed whitening

(Murray and Adams, 2010; Yu and Meng, 2011; Monterrubio-Gómez et al.,

2019), which breaks the dependencies of the variance component processes

and corresponding hyperparameters under the prior. We first note that

the logarithmized variance component processes can be expressed as

logσ2
E = C

1

2

EηE and logσ2
G = C

1

2

GηG, where ηE and ηG

are both standard multivariate normally distributed. The matrix square

roots are obtained straightforwardly through the approximations (see

supplementary material). Instead of logσ2
E and logσ2

G, we now sample

ηE and ηG. The reparametrisation corresponds to the following posterior

density

p(ηG,ηE , λE , λG|ỹc) ∝ pN (ỹc|0, K̃)pN (ηG|0, I)pN (ηE |0, I)

pN (log λE |µλ, ζ
2
λ)pN (log λG|µλ, ζ

2
λ),

where

K̃ = diag

(

exp

{

C
1

2

GηG

})

⊗G+ diag

(

exp

{

C
1

2

EηE

})

⊗ I .

The hyperparameters µλ and ζ2λ are set by following

Monterrubio-Gómez et al. (2019). In particular, it is based on the idea that

the length scale is identifiable between the smallest and largest distance

between two time points, say [a, b]. Hence we want to place most of its

prior probability mass in that interval. By using the quantile function of a

standard normal distribution, we can assign approximately 95% of the prior

mass between the interval by solving the following system of equations:

µλ − 1.96ζλ = log a

µλ + 1.96ζλ = log b.
(7)

We emphasize that this model specification leaves no tuning parameters to

fix prior to estimation which eliminates the need for preliminary analyses

and consequently saves plenty of time.

2.2.1 Parameter estimation in the joint model

To generate dependent MCMC samples from the posterior distribution

of parameters ηG and ηE we use the elliptical slice sampling method

(Murray et al., 2010). It is a rejection-free sampling algorithm and we

noticed that it does perform better for high dimensional data (more

than 100 time points) than the block-update of Metropolis–Hastings

(MH) algorithm. The problem with elliptical slice sampling is that the

likelihood must be evaluated multiple times in a single MCMC-iteration,

making it quite a bit slower than MH. For the length scales we use

MH with Gaussian random walk proposals, i.e. the proposal value is

sampled from the distribution N (θ(i), σ2
RW), where θ(i) is the current

value of the parameter. The variance is adapted following section 3 in

Roberts and Rosenthal (2009) to achieve an acceptance rate of 0.44 which

is considered optimal in certain settings. The four parameter subsets

(ηE ,ηG, log λE , log λG) are sampled in alternatingly while keeping the

other values fixed.

The computationally most intensive part of the algorithm is the

evaluation of the likelihood function, due to the inversion and determinant

computation of an NT × NT covariance matrix. Fortunately, the form

of the matrix allows us to utilise some basic linear algebra to make the

computations feasible. We start by examining the structure of matrix K̃

and note the block diagonal structure where the blocks consist of time

point specific covariance matrices:

K̃ =









σ2
G(1)G+ σ2

E(1)I 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . σ2
G(T )G+ σ2

E(T )I









.

This means we can express the overall log-likelihood function of the

parameters as a sum of log-likelihood functions of each time point

log p(ỹc|0, K̃) =

T
∑

t=1

log p(yc(t)|0,K(t)). (8)

We can now use eigen decomposition to decorrelate the measurements

using a linear transformation to speed up the computations. The covariance

matrix of the measurements y(t) at time t can be decomposed as

UD(t)U ′, where U is the eigenvector matrix of G and D(t) is a

diagonal matrix with [D(t)]nn = σ2
G(t)ξn + σ2

E(t) and ξn being

the eigenvalues of G. By the orthogonality of U , we have that

var(U ′y(t)) = U ′UD(t)U ′U = D(t), implicating that the elements

in the transformed measurement vector U ′y(t) are independent of each

other. This reduces the log-likelihood calculation into a sum. Most

importantly, since U does not depend on the variance components, the

transformation has to be done only once. Setting z(t) = U ′y(t), the

resulting log-likelihood can be written as

log p(ỹ|0, K̃) =
T
∑

t=1

N
∑

n=1

log p(z(t)n|0, σ
2
G(t)ξn + σ2

E(t)). (9)

The pseudocode for the algorithm can be found in the supplementary

material (algorithm 1).

2.3 Two-stage method

To illustrate the benefits of the joint model, we compare it to a baseline

approach. The method consists of two stages: (i.) the estimation of

posterior means of the variance components and their 95% credible

intervals at each time point separately and (ii.) combining individual

estimates together by smoothing the obtained estimates from stage one.

The estimation in stage one is based on the same model as in the joint
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estimation but for one time point

yc(t) = u(t) + ǫ(t), (10)

where yc is the centered measurement vector at time t, u(t) ∼

N (0, σ2
G(t)G) and ǫ(t) ∼ N (0, σ2

E(t)I). As in the joint method, the

data is scaled such that the overall variance over time points is 2. The

covariance matrix of yc(t) is K(t) = σ2
G(t)G+σ2

E(t)I and the model

can be written as

yc(t) ∼ N (0,K(t)),

log σ2
G(t) ∼ N (0, 1),

log σ2
E(t) ∼ N (0, 1).

(11)

We note that this is a special case of the joint model presented earlier,

see eq. (3). Posterior means and 95% credible intervals of the variance

components at each time point are obtained from this analysis used in the

next stage.

Smoothing of the variance component curves over time is based on the

model

yσ2 = fσ2 + ǫσ2 , (12)

where yσ2 contains either logarithmized posterior means, lower 95%

credible interval limits or upper 95% credible interval limits estimated

in stage one, fσ2 ∼ GP(0, Cλ(t, t
′)) is a smooth process and ǫσ2 ∼

N (0, γ2I) is an error term. Cλ(·, ·) is again the Matérn covariance

function, defined in eq. (5). Here yσ2 is scaled to have mean zero and

variance one. After discretisation, the model can be written as follows:

yσ2 ∼ N (0,Cλ + γ2I),

log γ2 ∼ N (0, 10000),

log λ ∼ N (µλ, ζ
2
λ),

(13)

where γ2 and λ are assumed to be a priori independent. The variance

parameter in the error term is given an uninformative prior and

the parameters µλ and ζ2λ are fixed similarly as in joint estimation

method following Monterrubio-Gómez et al. (2019). The process fσ2

is analytically integrated out of the model, but we can reconstruct it

at the measurement points after the estimation of the hyperparameters

(Rasmussen and Williams, 2006) by noting that

fσ2 |yσ2 , λ, γ2 ∼

N (Cλ(Cλ + γ2I)−1yσ2 ,Cλ −Cλ(Cλ + γ2I)−1Cλ).

2.3.1 Parameter estimation in the two-stage method

The parameters log σ2
G(t) and log σ2

E(t) in stage one are estimated using

a random walk MH-algorithm with the same adaptation as in the joint

estimation method. They are sampled at MCMC iteration i + 1 from the

distributions

N (log σ2
G(t)(i), sσ2

G
(t)(i)) and N (log σ2

E(t)(i), sσ2

E
(t)(i)). The

proposals are accepted by MH (a single parameter at a time) conditionally

on the other parameter fixed to its latest value.

The parameters log γ2 and log λ of the smoothing model in phase two

are estimated similarly as in stage one with the same adaptation. They are

sampled at iteration i + 1 from the distributions N (log γ2(i), s
(i)

γ2
) and

N (log λ(i), s
(i)
λ ). The proposals are accepted by MH (a single parameter

at a time) conditionally on the other parameter fixed to its latest value.

The pseudocode for both stages can be found in the supplementary

material (algorithms 2 and 3).

2.4 Computational considerations

Since the log-likelihood in the joint estimation method can be expressed

as a sum (eq. 9), its computation can be parallelized. We parallelized all

log-likelihood calculations, gaining additional speedups. The computation

times were between 24 minutes for the mouse activity data and 31

minutes for the Arabidopsis data with 300 000 MCMC-iterations. The

workstation used for the simulations had an AMD Ryzen Threadripper

2950X 3.5 Ghz processor with 16 cores and 32 GB of RAM. The method

is implemented with C++ integrated with R using the Rcpp library

(Eddelbuettel and François, 2011) and Eigen (Guennebaud et al., 2010)

(http://eigen.tuxfamily.org) for linear algebra. The program is available at

https://github.com/aarjas/dynBGP.

3 Example analyses

To test the methods described above, we used four different datasets with a

large number of time points. Two were simulated and the two others were

real datasets from https://phenome.jax.org/centers/QTLA.

3.1 Simulated dataset

The simulated data consists of measurements from N = 1000

individuals from T = 50 time points. First, a relationship matrix

was created by generating an N × N matrix S with independent

standard normally distributed elements. The relationship matrix was

then computed as G = SST /N + 0.1I . A small number was

added to the diagonal to make the matrix positive definite. To simulate

realistic data, the longitudinal dependencies need be taken into account

as well. This was done by computing a T × T Gaussian process

matrix C where the row i and column j intersection was set to

[C]ij =

(

1 +
√
5|ti−tj |
(50/3)

+
5(ti−tj)

2

3·(50/3)2

)

exp

(

−
√
5|ti−tj |
(50/3)

)

. The

genetic and environmental components of the data were simulated from

the distributions N (0,C ⊗G) and N (0,C ⊗ I), respectively. Finally,

the components were scaled with the corresponding variances at each time

point and summed. A correct relationship matrix was assumed known in

the analysis stage. To demonstrate scalability of the approach, we created

larger datasets with up to 50 000 individuals and 1000 time points, see

supplementary material (Fig. S5).

3.2 Arabidopsis thaliana dataset

The second dataset contains Arabidopsis thaliana root tip angle

measurements (Moore et al., 2013). The population consists of N = 162

recombinant inbred lines of Arabidopsis seeds with 234 markers. The seeds

were placed on Petri dishes that were held in front of a camera and rotated

90◦ so that the roots grew parallel to the ground. The root tip angle was

measured every two minutes for eight hours resulting in T = 239 time

points. Moore et al. (2013) describe the measurement process in more

detail. We used a version of the data where the phenotype values were

averages of multiple individuals representing the same line.

3.3 Mouse activity dataset

The third dataset consists of mouse activity measurements (Xiong et al.,

2011). The activity of N = 89 mouses was monitored over a period of

12 days. One day was divided into 6 minute intervals and an active state

probability of a given mouse in each interval was calculated based on the

12 days of data. This results in T = 222 time points. Since the outcome is

a probability, normality assumption is not realistic. Hence we transformed

the phenotypic data using logit-transformation following the procedure

described by Li and Sillanpää (2013). The data also has measurements of

251 markers.
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3.4 Comparison with ACEt

We also compared our joint estimation method with the freely available

ACEt R-package for estimating dynamic heritability (He et al., 2016,

2017). The method is restricted only for twin data and it uses splines in

defining the different dynamic variance components. The ACEt model also

includes a common environmental effect as a third variance component,

which our model lacks. For uncertainty quantification, ACEt uses delta-

method or bootstrap. For the method comparison we used a simulated twin

dataset that comes with the ACEt R-package. It consists of 100 twin pairs,

half of who are monozygotic and half of who are dizygotic. The N = 200

individuals have T = 50 equispaced measurements of an artificial trait

over 50 years. In twin models, the covariances in the relationship matrix

between a monozygotic twin pair and a dizygotic twin pair are assumed to

be 1 and 0.5, respectively, while the diagonal values are all 1. Between-pair

covariance is assumed to be 0.

3.5 Completing missing genotype data by imputation

There were no missing phenotype values in any of the datasets. The

mouse activity dataset had0.3% and the Arabidopsis dataset1.4%missing

marker values. All missing values were imputed once before calculating

the genomic relationship matrix with the mean value of the given marker

over individuals.

4 Results

The results from the Bayesian analysis of simulated data are presented in

Figure 2 for both methods. The posterior estimated variance component

functions generally follow the real functions that were used to generate

the data well. Perhaps the most interesting aspect about the results is the

difference in the uncertainty of the estimates between the methods. The

95% credible intervals provided by the joint model are far narrower than

those of the two-stage method. This is because the joint model makes use

of the whole dataset, while the two-stage method uses the data of each

time point independently.

The estimated posterior mean curves and their 95% credible intervals

for variance components and SNP-heritability calculated from the

Arabidopsis seed data are presented for the joint model and two-stage

method in Figure 3. Again, one can clearly see much wider 95% credible

intervals surrounding the posterior mean curves obtained from the two-

stage method. Moore et al. (2013) have also estimated the dynamic

heritability from this dataset using ANOVA. They calculated the variances

within and between genetically distinct lines separately at every point in

time. The curve has the same shape but the actual values are somewhat

smaller than ours, peaking at 0.25, while our estimate peaks at about 0.4.

This offset can be explained by different averaging of used data and in

particular, their estimation lacks uncertainty estimates. Vanhatalo et al.

(2019) have analyzed the same data as well and are likely using the

same averaging as we do. We note, that their obtained heritability

estimates coincide very well with ours. However, they also lack uncertainty

estimates. Interestingly, similar results were not expected, since the two

analysis models differ significantly in structure and especially in terms of

assumptions on the underlying genetics.

The posterior estimates from the mouse activity data are presented in

Figure 4. This kind of data seems to be challenging for the Gaussian

process models. This is mainly due to the fact that here the variance

processes have very rough features along with smooth areas. Thus, the

amount of smoothing needed is very different at different time points.

Especially the heritability process estimated with the two-stage method

does not perform so well and produces highly oscillating features. The

same data was analysed in Vanhatalo et al. (2019) as well. In this case, their

heritability estimates look quite different to ours. In particular, our methods

have smoothed most rough edges, whereas their estimate has preserved

them. Nevertheless, the overall shape is similar. These differences here

are likely the consequence of using very different models.

We also compared the joint model with a random regression model

(RRM) (implemented in for example BLUPF90 (Misztal et al., 2002),

MCMCglmm (Hadfield, 2010) and MTG2 (Lee and van der Werf, 2016))

which is a well established method for analysing dynamic biological

phenomena. We simulated ten different datasets with the method from

section 3.1 and fitted a Legendre polynomial of degree five for both the

genomic breeding values and permanent environmental effects. The model

assumes heterogenous residual variances over time. A more precise model

definition can be found in the supplementary material. We computed the

mean squared error (MSE) of the estimated genetic and environmental

variances as well as heritabilities, where MSE = (1/T )
∑T

t=1(f(t) −

f̂(t))2, with f(t) being the ground truth at time t and f̂(t) the estimate at

time t. We used posterior mean as the point estimate for the joint method.

The computed errors can be found in the supplementary material (Table

S1). This analysis was performed using AI-REML method in the software

MTG2 (Lee and van der Werf, 2016) and it took on average 14 minutes.

The MSE of the joint method was on average 17% smaller than of the

RRM. We note that the MSE varies with the chosen degree of the Legendre

polynomials and for this computation we chose the best performing

combinations with a reasonable computation time. Additionally, we fitted a

Bayesian version of the same model using BLUPF90 family of programs

(Misztal et al., 2002) and GIBBS2F90 in particular. This allowed us to

quantify the uncertainty in the variance components estimated with the

RRM. The results of the analysis and further details can be found in the

supplementary material (Fig. S7). The 95% credible intervals obtained

from the RRM are slightly wider than of the joint model. This might be

due to the differences in model structures (cf. Fig. 1). The computation

time for the Bayesian RRM for the simulated dataset was over 24 hours

while for the joint method it was less than 30 minutes with 300 000 MCMC-

iterations in both. Furthermore, we would like to mention that the RRM

implemented in both MTG2 and GIBBS2F90 did not converge on our

real dataset examples where the number of individuals is small but the

number of time points high. Yet, the joint method manages to do so, i.e.

the MCMC sampler converges. It is not completely clear to us why this is

the case. One possibility might be the difference in assumptions: In RRMs

the assumptions about the parametric shape of the breeding values and

environmental effects induce some shape for the variance components. In

the joint method, the prior assumptions concern only the variances. This

direct modelling strategy might simplify the estimation process.

Finally, the comparison of our joint model with the ACEt model

for analyzing twin data is presented in the supplementary material (Fig.

S4). The results obtained by both methods are consistent, even though

ACEt considers also common environment in its model. In our method,

the genetic variance component seems to have absorbed the common

environmental variation, resulting in slightly higher heritability estimate

than the one given by ACEt. The uncertainty estimates differ a bit between

the methods, which is likely due to the common environmental component.

Moreover, obtained uncertainty limits are not fully comparable because the

frequentist ACEt method uses delta-method and our Bayesian method uses

MCMC sampling for generating the limits.

Performance of the MCMC-algorithm for the joint model can be

evaluated from traceplots of the parameters (supplementary material, Fig.

S1–S3). All of the parameter chains seem to have converged, although

there is some oscillation on the variance component parameters with the

lowest effective sample size.
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Fig. 2. The dynamic variance components and SNP-heritability estimated from the

simulated dataset with the two different Bayesian methods. The posterior mean curves

are drawn with solid lines and 95% credible intervals with dashed lines.

Fig. 3. The dynamic variance components and SNP-heritability estimated from the

Arabidopsis thaliana dataset with the two different Bayesian methods. Posterior mean curves

are drawn with solid lines and 95% credible intervals with dashed lines.

5 Discussion and conclusions

We presented a new Bayesian method for estimating dynamic narrow-sense

heritability, based on linear mixed models and Gaussian process priors.

The method uses data from all time points at once, making it possible

for the time points to ’borrow strength’ from one another through the

prior covariance structure. This property makes the resulting posterior

distributions narrower compared to the second method where the variance

components are estimated separately for each time point and smoothed

Fig. 4. The dynamic variance components and SNP-heritability estimated from the mouse

activity dataset with the two different Bayesian methods. Posterior mean curves are drawn

with solid lines and 95% credible intervals with dashed lines.

afterwards. Another benefit of the method presented due to nonparametric

smoothing using Gaussian processes is that it can handle very general

functional shapes.

The presented estimation method bears some similarities with random

regression as both are based on linear mixed models, but there are essential

differences that we would like to point out. Most notably, in our proposed

method the smoothing is based on priors that are set for the variance

component vectors, while in random regression the smoothness of the

variances is induced through the assumptions made about the functional

shape of the breeding values and environmental effects. Additionally,

our model assumes independence of different traits (measurements made

at different points in time) and ties them together with the priors. In

multivariate linear mixed models, traits are assumed to be dependent and

random regression attempts to reduce the size of the estimated covariance

matrix by reparametrisation.

A benefit of our proposed method is the ability to quantify the

uncertainty in the variance component estimates. This is also possible in

Bayesian RRMs using MCMC but in frequentistic RRMs additional steps

such as application of delta method or bootstrap are needed to produce the

respective confidence intervals. In addition, our method is completely free

of tuning whereas in random regression the degree of the polynomial or

alternatively knot points in splines must be chosen prior to estimation. In

practice, we noticed that the estimation in MTG2 is really fast for a few

traits but it slows down quickly as the number of traits increases. In fact,

trying to run the algorithm with 1000 individuals and 100 traits causes an

insufficient virtual memory error. In contrast, out algorithm still worked

well with 50 000 individuals and 100 time points within a reasonable time

(approximately 20 hours). Additionally, high number of traits is not an

issue either as demonstrated in the supplementary material (Fig. S5). We

like to emphasize that the computation times grow almost linearly and

hence our algorithm exhibits excellent scalability. Based on our results,

we believe that random regression performs best when there is a high

number of individuals and low number of time points which was not the
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case in our real data examples. In MTG2, the time complexity is cubic with

respect to the number of time points (Lee and van der Werf, 2016), and we

believe this is also the case with other RRM implementations. It is also

noted by Schaeffer (2016) that Legendre polynomials might cause artefacts

near the boundaries of the covariate domain and hence Gaussian processes

are favoured. A limitation of our method is the inability to model gene-

covariate interactions with possibly only one measurement per individual

(cf. Ni et al., 2018; Moore et al., 2019). Theoretically, to perform such

analysis, the covariate would have to be split up into discrete groups with

each group containing suitably large population (cf. Robinson et al., 2017).

This would also result in each group having their own relationship matrix.

This is not supported by the algorithm at the moment, however.

Furthermore, the method presented here can also be extended for

further analysis. For example, given the posterior mean estimates

σ̂2
G(t) and σ̂2

E(t) at time t, the conditional distribution of genomic

breeding values u(t) is N (µu(t),Σu(t)) (Rasmussen and Williams,

2006), where

µu(t) = σ̂2
G(t)G(σ̂2

G(t)G+ σ̂2
E(t)I)−1y(t) and

Σu(t) = σ̂2
G(t)G− σ̂2

G(t)G(σ̂2
G(t)G+ σ̂2

E(t)I)−1σ̂2
G(t)G.

(14)

The posterior means of genomic breeding values are not smooth functions

over time (cf. Campbell et al., 2018). After computing the breeding

values, the SNP effects m(t) can be estimated for association mapping

purposes by the back-transformation formula m̂(t) = R′G−1µu(t),

where [R]ij = ([M ]ij + 1− 2pj)(
√

2pj(1− pj))
−1, pj is the allele

frequency of the other allele in marker j and M defined in section

2.1 (Bernal Rubio et al., 2016). This kind of longitudinal analysis was

recently performed by Campbell et al. (2019) who first estimated the

breeding values with a random regression model and then used the back-

transformation to solve for the SNP effects. Results were compared to

an alternative single time point analysis and the authors found that the

dynamic analysis recovered more significant associations. The presented

model can also be extended by adding fixed environmental effects that

affect the phenotype values. This could further reduce the estimation error.

Another strategy is to apply a two-stage precorrection similar to He et al.

(2016). This means that a linear regression model is first fitted to estimate

the fixed effect coefficients and the residuals of that model are then used

as phenotype values to estimate the variance components in our LMM.

Further extension would be to consider non-Gaussian longitudinal

phenotypes, for example binary or count data. In case of binary data,

an extra latent trait layer can be added to the model (Albert and Chib,

1993; Felsenstein, 2005; Kärkkäinen and Sillanpää, 2013). In latent trait

modelling, the binary phenotype can be modelled by considering an

underlying hypothetical normally distributed latent trait variable which

gives rise to the binary trait at the observed layer. If the latent trait variable

is smaller than the pre-determined threshold, binary trait at the observed

layer obtains the value zero and otherwise it obtains the value one.

One future extension is also to consider multiple longitudinal

quantitative traits simultaneously. Some models and methods have been

presented for this purpose – to explain the variation of more than one trait

simultaneously over time (Sung et al., 2016; Oliveira et al., 2019).

To conclude, we presented a new tuning-free method for estimating

dynamic heritability using a Bayesian linear mixed model and GP priors.

To estimate the parameters in the model, we use MCMC which makes the

uncertainty quantification straightforward. Our results clearly illustrate

that joint modelling of the data of all time points reduces the uncertainty

in the estimates compared to independent modelling.
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