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Abstract The paper surveys variational approaches for image reconstruc-
tion in dynamic inverse problems. Emphasis is on methods that rely on
parametrised temporal models. These are here encoded as diffeomorphic de-
formations with time dependent parameters, or as motion constrained recon-
struction where the motion model is given by a partial differential equation.
The survey also includes recent development in integrating deep learning for
solving these computationally demanding variational methods. Examples are
given for 2D dynamic tomography, but methods apply to general inverse
problems.

1 Introduction

Dynamic inverse problems in imaging refers to the case when the object
being imaged undergoes a temporal evolution during the data acquisition.
The resulting data in such an inverse problem is a time (or quasi-time) series
and due to limited sampling speed typically highly under-sampled. Failing
to account for the dynamic nature of the imaged object will lead to severe
degradation in image quality and hence there is a strong need for advanced
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modelling of the involved dynamics by incorporating temporal models in the
reconstruction task.

The need for dynamic imaging arises for instance in various tomographic
imaging studies in medicine, such as imaging moving organs (respiratory and
cardiac motion) with computed tomography (CT) [34], positron emission to-
mography (PET) or magnetic resonance imaging (MRI) [41] and in functional
imaging studies by means of dynamic PET [50] or functional MRI [22]. In
functional imaging studies, the dynamic information is crucial for the diag-
nostic value to asses functionality of organs or tracking an injected tracer.
Spatiotemporal imaging also arises in life sciences [43] where it is crucial to
understand dynamics and interactions of organisms. Lastly, applications in
material sciences [52, 15] and process monitoring [12] rely on the capabilities
dynamic image reconstruction.

Mathematically, solving dynamic inverse problems in imaging, or spa-
tiotemporal image reconstruction, aims to recover a time dependent image
from a measured time-series. Since the measured time series is typically highly
undersampled in each time instance, the reconstruction task is ill-posed and
additional prior knowledge is needed to recover a meaningful spatiotemporal
image. One such prior assumption can be made on the type of dynamics in
the studied object, which can regularise the reconstruction task by penalising
unrealistic motion.

This review focuses on methods that recover the tomographic image jointly
with determining parameters in a temporal model that regulates its time evo-
lution. We discuss how temporal models can be incorporated into a variational
framework and present two primary choices to incorporate temporal informa-
tion. Either by deforming a static template using time dependent parameter
or constrain the variational formulation using an explicit motion model.

2 Spatiotemporal inverse problems

The starting point is to mathematically formalise the notion of a spatiotem-
poral inverse problem, which refers to the task of recovering a time dependent
image from (time dependent) noisy indirect observations.

Image: The time dependent image is formally represented by a function
f : [0, T ] × Ω → Rk where k is the number of image channels (k = 1 for
greyscale images) and Ω ⊂ Rd is the image domain.
We henceforth assume f(t, ·) ∈ X where X (reconstruction space) is some
vector space of Rk-valued functions on Ω ⊂ Rd that, unless otherwise
stated, is a Hilbert space under the L2-inner product.

Data: Data is represented by a time dependent function g : [0, T ]×M → Rl
where M is some manifold that is defined by the acquisition geometry and
l is the number of data channels. Likewise, we assume that g(t, ·) ∈ Y
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where Y (data space) is some vector space of Rl-valued functions on M
that, unless otherwise stated, is a Hilbert space under the L2-inner prod-
uct. Actual measured data represents a digitisation of this function by
sampling on [0, T ]×M .

Spatiotemporal inverse problem: This is the task of recovering a temporal
image t 7→ f(t, ·) ∈ X from time series data t 7→ g(t, ·) ∈ Y where

g(t, ·) = A
(
t, f(t, ·)

)
(t, ·) + e(t, ·) on M for t ∈ [0, T ]. (1)

Here, A(t, ·) : X → Y is a (possibly time-dependent) forward operator that
models how an image at time t gives rise to data in absence of noise or
measurement errors. The observation noise in data is accounted for by
e(t, ·) ∈ Y , which can be seen as a single random realisation of a Y -valued
random variable that models measurement noise.

Remark 1 The formulation in (1) also covers cases when noise in data depends
on the signal strength, like Poisson noise. Simply assume e(t, ·) in (1) is a
sample of the random variable e(t, ·) := g(t, ·) − A

(
t, f(t, ·)

)
where g(t, ·) is

the Y -valued random variable generating data.

Special cases of (1) arise depending on how the time dependency enters
into the problem. In particular, the following three components can depend
on time independently of each other:

(a) Forward operator: The forward model may depend intrinsically on time.
(b) Data acquisition geometry: The way the forward operator is sampled has

a specific time dependency.
(c) Image: The image to be recovered depends on time.

Next, an important special case is when data in (1) is observed at discrete
time instances 0 ≤ t0 < . . . < tn ≤ T . Then, (1) reduces to the task of
recovering images fj ∈ X from data gj ∈ Y where

gj = Aj(fj) + ej for j = 1, . . . , n. (2)

In the above, we have made use of the following notation for j = 1, . . . , n:

gj := g(tj , ·) ∈ Y fj := f(tj , ·) ∈ X
ej := e(tj , ·) ∈ Y Aj := A

(
tj , ·) : X → Y.

(3)

2.1 Reconstruction without explicit temporal models

The inverse problem in (1) is almost always ill-posed, so solving it requires
regularisation both regarding the spatial and temporal variation of the image.
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A variational approach for reconstructing the image trajectory t 7→ f(t, ·)
that does not use any explicit temporal model reads as

arg min
t 7→f(t,·)∈X

∫ T

0

[
L
(
A
(
t, f(t, ·)

)
, g(t, ·)

)
+ J θ

(
t, f(t, ·)

)]
dt. (4)

Here, L : Y × Y → R is the data fidelity term (data-fit), which is ideally
chosen as an appropriate affine transform of the negative log-likelihood of
data [6]. The term J θ : X → R is a parametrised regulariser that accounts
for a priori knowledge about the image. It is common to separately regularise
the spatial and temporal components, e.g., by considering

J θ
(
t, f(t, ·)

)
:= Sγ

(
f(t, ·)

)
+ T τ

(
∂tf(t, ·)

)
for θ = (γ, τ).

In the above, Sγ : X → R is a spatial regulariser and T τ : X → R is a
temporal regulariser. The spatial regulariser is commonly of the form Sγ :=
γ S where γ > 0 and S : X → R is some ‘energy’ functional. There is a well-
developed theory for how to choose the latter in order to promote solutions
of an inverse problem with specific type of regularity, e.g., a suitable choice
for H1(Ω)-regularity is

S(f) :=

∫
Ω

∣∣∇f(x)
∣∣2dx. (5)

On the other hand, if the image has edges that need to be preserved, then
BV(Ω)-regularity is more natural and a total variation (TV)-regulariser is a
better choice [51]. This regulariser is for f ∈W 1,1(Ω) expressible as

S(f) :=

∫
Ω

∣∣∇f(x)
∣∣dx. (6)

Other choices may include higher order terms to the total variation functional,
like in total generalised variation, see [5, 54] for a survey.

The choice of temporal regulariser is much less explored. This functional
accounts for a priori temporal regularity. Similarly to (5) one can here think
of a smoothness prior for slowly evolving images

T (∂tf) :=

∫
Ω

∣∣∂tf(x)
∣∣2dx, (7)

or a total variation type of penalty for changes that are small or occur step-
wise (image changes step-wise). The regulariser (7) acts point-wise in time
and full temporal dependency is obtained by integrating over time in (4).

Methods for solving (1) based on (4) can be used when there is no explicit
temporal model that connects images and data across time. Hence, the are
applicable to a wide range of dynamic inverse problems as outlined in [56, 57].
More specific imaging related applications are [19, 41, 59] for spatiotemporal
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compressed sensing in dynamic MRI. Here, the temporal regularity is enforced
by a sparsifying transform (or total variation). Further examples are µCT
imaging of dynamic processes [7, 45] and process monitoring with electrical
resistance tomography [12].

Remark 2 When data is time discretised, then one also has the option to
consider reconstructing images at each time step independently. An example
of this is to recover the image at tj by using a variational regularisation

method, i.e., as fj ≈ f̂j where

f̂j := arg min
f∈X

{
L
(
Aj(f), gj

)
+ Sγj (f)

}
for j = 1, . . . , n. (8)

Our emphasis will henceforth be on methods for solving (1) that utilise
more explicit temporal models.

2.2 Reconstruction using a motion model

The idea here is to assume that a solution t 7→ f(t, ·) ∈ X to (1) has a time
evolution that can be modelled by a motion model. Restating this assumption
mathematically, we assume there is an operator Ψ : [0, T ]×X → X (motion
model) such that

Ψ
(
t, f(t, ·)

)
= 0 on Ω whenever t 7→ f(t, ·) solves (1). (9)

Hence, (1) can be re-phrased as the task of recovering the image trajectory
t 7→ f(t, ·) ∈ X along with its motion model Ψ : [0, T ] × X → X from time
series data t 7→ g(t, ·) ∈ Y where

g(t, ·) = A
(
t, f(t, ·)

)
(t, ·) + e(t, ·) on M

s.t. Ψ
(
t, f(t, ·)

)
= 0 on Ω.

for t ∈ [0, T ]. (10)

2.2.1 Parametrised motion models

An important special case is when the motion model only depends on time
through a time dependent parameter, i.e., there is Ψθ : X → X for θ ∈ Θ
such that

Ψθt
(
f(t, ·)

)
= 0 on Ω whenever t 7→ f(t, ·) solves (1), (11)

for some t 7→ θt. Then, (1) can be re-phrased as the task to recover t 7→
f(t, ·) ∈ X along with motion parameter t 7→ θt ∈ Θ from time series data
t 7→ g(t, ·) ∈ Y where
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g(t, ·) = A
(
t, f(t, ·)

)
(t, ·) + e(t, ·) on M

s.t. Ψθt
(
f(t, ·)

)
= 0 on Ω.

for t ∈ [0, T ]. (12)

The assumption in (11) may act as a regularisation since it introduces a
model for how images vary across time. In particular, the inverse problem in
(12) is challenging, but still easier to handle than the one in (1). However,
solving (12) will still most likely require regularisation. Approaches surveyed
in section 4 represent different ways for doing this based on the setting where
Ψθ : X → X is given as a differential operator (involving differentiation in
both temporal and spatial variables). Then parameter set Θ is a vector space
of vector fields θ : Ω → Rd with sufficient regularity, so θt corresponds to
a velocity field. With these assumptions, (11) is a differential equation that
constrains the temporal evolution of the solution to (1) and (12) corresponds
to reconstructing the image jointly with its motion model.

2.2.2 General variational formulation

It is quite natural to adopt a variational approach for solving (12). In fact,
many of the state-of-the-art methods are of the form

arg min
f(t,·)∈X
θt∈Θ

{∫ T

0

[
L
(
A
(
t, f(t, ·)

)
, g(t, ·)

)
+ T τ (t, θt) + Sγ(f(t, ·))

]
dt

}
.

s.t. Ψθt
(
f(t, ·)

)
= 0, for t ∈ [0, T ].

(13)

Just as for (4), one here needs to choose Sγ : X → R (spatial regulariser) and
T τ (t, ·) : X → R (temporal regulariser), whereas L : Y × Y → R is derived
from a statistical model for the noise in data.

In practice, the hard constrained formulation might be too restrictive and
we rather aim to solve a penalised version, where the motion constraint is
incorporated as a regulariser, see section 4 for further detials. Next, for data
that is time discretised, the formulation in (13) reduces to a series of recon-
struction and registration problems that are solved simultaneously. Practi-
cally, the optimisation is usually performed in an alternating way, where first
a dynamic reconstruction f(t, ·) for t ∈ [0, T ] is obtained, followed by an up-
date of the motion parameters t 7→ θt. This procedure is then iterated until
a sufficient convergence criterium is fulfilled [9]. Interpreted in a Bayesian
setting, this approaches compares to smoothing, see for instance [8] for a
discussion on this topic.
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2.3 Reconstruction using a deformable template

The idea here is that when solving (1), the temporal model for t 7→ f(t, ·) ∈ X
is given by deforming a fixed (time independent) template f0 ∈ X using a
time dependent parametrisation of a deformation operator.

2.3.1 Deformation operators

To formalise the underlying assumption in reconstruction with a deformable
template, we assume there is a fixed family {Wθ}θ∈Θ of mappings (deforma-
tion operators)

Wθ : X → X for θ ∈ Θ. (14)

Next, we assume that

f(t, ·) =Wθt(f0) on Ω whenever t 7→ f(t, ·) solves (1), (15)

for some t 7→ θt ∈ Θ and f0 ∈ X. Then, (1) can be re-phrased as the inverse
problem of recovering f0 ∈ X and t 7→ θt ∈ Θ from time series data g(t, ·) ∈ Y
where

g(t, ·) = A
(
t,Wθt(f0)

)
+ e(t, ·) on M for t ∈ [0, T ]. (16)

The assumption in (15) may act as a regularisation since it introduces
a model for how images vary across time. In particular, the inverse prob-
lem in (16) is challenging, but still easier to handle than the one in (1).
However, solving (16) will still most likely require regularisation. Variational
approaches are suitable for this purpose, but these typically involve optimisa-
tion over the parameter set Θ so it is desirable to ensure Θ has a vector space
structure. Section 3 surveys different approaches for solving (16) based on the
setting where the deformation operator is a diffeomorphic deformation.

Remark 3 Comparing assumption (15) with (9), we see that they are equiv-
alent if

Ψ
(
t,Wθt(f0)

)
= 0 holds on Ω for t ∈ [0, T ].

Hence, it is sometimes possible to view a motion model as deforming a tem-
plate using a deformation operator with time dependent parametrisation.
Likewise, a deformation operator with a time dependent deformation acting
on a template gives rise to a motion model.

2.3.2 General variational formulation

A variational approach for solving (16) can be formulated as
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arg min
f0∈X
t7→θt∈Θ

{∫ T

0

[
L
(
A
(
t,Wθt(f0)

)
, g(t, ·)

)
+ T τ (t, θt)

]
dt+ Sγ(f0)

}
. (17)

This is very similar to (4) with L : Y ×Y → R denoting the data fidelity term
and the regularisation term is a sum of a spatial and temporal regulariser:

Sγ : X → R and T τ (t, ·) : Θ → R.

The choice of the spatial regulariser Sγ is a well-explored topic as outlined in
section 2.1. In contrast, how to choose an appropriate temporal regulariser
T τ is less explored and closely linked to assumptions on t 7→ θt, which governs
the time evolution of the image, see, e.g., section 3.3 for an example.

2.3.3 Time discretised data

There are different strategies for solving (16) when data is time discretised.
They differ depending on how the time discretised version is formulated, and
in particular on how the initial template f0 is used for building up the images
fj by means of a deformable templates model.

Independent trajectory: The time discretised version of (16) is formulated
as the task of recovering f0 ∈ X and θj ∈ Θ from data gj ∈ Y where

gj = Aj
(
Wθj (f0)

)
+ ej for j = 1, . . . , n. (18)

In the above, Wθj : X → X registers the initial template image f0 ∈ X
against a target image fj ∈ X that is indirectly observed through data
gj ∈ Y . In particular, the trajectory t 7→ f(t, ·) is made up of images
f(tj , ·) = fj :=Wθj (f0) that are generated independently from each other
by deforming the initial template f0.
One approach for solving (18) is to compute f̂j :=W θ̂j

(f̂0) where

(f̂0, θ̂1, . . . , θ̂n) ∈ arg min
f0∈X

θ1,...,θn∈Θ

{ n∑
j=1

[
L
(
Aj
(
Wθj (f0)

)
, gj

)
+ T τ (θj) + Sγ

(
Wθj (f0)

)]}
. (19)

Note that the choice of T : Θ → R may introduce a dependency between
f̂j and f̂k for j 6= k even though fj and fk only depend on each other
through the template f0.

Single trajectory: Here the template f0 is only used once to generate the
image at t1, the sequence of images at t2, . . . , tn that make up the trajec-
tory t 7→ f(t, ·) are generated sequentially. The time discretised version of
(16) now reduces to the task of recovering f0 ∈ X and θj ∈ Θ from data
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gj ∈ Y where

gj = Aj
(
Wθj (fj−1)

)
+ ej for j = 1, . . . , n. (20)

In contrast to (18), Wθj : X → X is used here to deform fj−1 ∈ X (image
at time step tj−1) to the target image fj ∈ X that is indirectly observed
through data gj ∈ Y . Note that one can re-write (20) as

gj = Aj
(
(Wθj ◦ . . . ◦Wθ1)(f0)

)
+ ej for j = 1, . . . , n. (21)

One can attempt at solving (20) by the following intertwined scheme:

f̂0 = arg min
f∈X

{
L
(
A1(f), g1

)
+ J (f)

}
θ̂j ∈ arg min

θ∈Θ

{
L
(
Aj
(
Wθ(f̂j−1)

)
, gj

)
+ T τ (θ) + Sγ

(
Wθ(f̂j−1)

)}
f̂j :=W θ̂j

(f̂j−1)

for j = 1, . . . , n.

(22)
Note that recursive time-stepping schemes of the above type can be related
to filtering approaches in a Bayesian setting, see for instance [26] for an
application to dynamic X-ray tomography.

3 Approaches based on ordinary differential equations

The reconstruction methods described here aim to solve (16) using de-
formable templates (section 2.3).

Images are elements in the Hilbert space X := L2(Ω,R) for some fixed
bounded domain Ω ⊂ Rd. The deformation operator is given by acting with
diffeomorphisms on images. Hence, let Diff(Ω) denote the group of diffeo-
morphisms (with composition as group law) and (φ, f0) 7→ φ.f0 denotes the
(group) action of Diff(Ω) on X. In imaging there are now two natural options:

Geometric group action: This group action simply moves image intensities
without changing their grey-scale values, which corresponds to shape de-
formation:

φ.f0 := f0 ◦ φ−1 for φ ∈ Diff(Ω) and f0 ∈ X. (23)

Mass preserving group action: Image intensities are allowed to change, but
one preserves the total mass:

φ.f0 :=
∣∣Dφ−1∣∣ (f0 ◦ φ−1) for φ ∈ Diff(Ω) and f0 ∈ X. (24)
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The second key component is to describe how the deformation operator is
parametrised, which here becomes a parametrisation of the (sub)group of
diffeomorphisms that are of interest. Much of the theory is motivated by
image registration and registation can in this setting be formulated as an
optimisation over Θ, so the chosen parametrisations is preferably an element
in a vector space Θ.

3.1 Flow of diffeomorphisms and intensities

In the large deformation diffeomorphic metric mapping (LDDMM) frame-
work for image registration, Θ = V where V ⊂ C1

0 (Ω,Rd) is a suitable
Banach/Hilbert space of vector fields and the parametrised diffeomorphisms
GV are obtained by considering solutions to (25).

For a given velocity field ν : [0, T ]×Ω → Ω, one can consider solutions to
the flow equation

d

dt
φ(t, x) = ν

(
t, φ(t, x)

)
φ(0, x) = x

for x ∈ Ω and t ∈ [0, T ]. (25)

Next, let L1 ([0, T ], V ) denote the vector space of mappings ν : [0, T ]×Ω → Rd
(velocity fields) where ν(t, ·) ∈ V . If V is admissible, then (25) has diffeo-
morphic solutions at any time 0 ≤ t ≤ 1 whenever ν ∈ L1 ([0, T ], V ) ([63,
Theorem 7.11] and [1]). Then, we can define φνs,t : Rd → Rd as

φνs,t := φ(t, ·) ◦ φ(s, ·)−1 for s, t ∈ [0, T ] and φ(t, ·) solving (25). (26)

This is a diffeomorphism for any 0 ≤ s, t ≤ 1, so GV defined below becomes
a subgroup of diffeomorphisms parametrised by V :

GV :=
{
φ : Rd → Rd : φ = φν0,T for some ν ∈ L1 ([0, T ], V )

}
. (27)

Remark 4 GV is actually a subgroup of Diff1,∞
0 (Ω) [63, Theorem 7.16] where

Diffp,∞0 (Ω) is the group of p-diffeomorphisms that tend to the identity at
infinity:

Diffp,∞0 (Ω) :=
{
φ ∈ Diffp,∞(Ω) : φ− Id ∈ Cp0 (Ω,Rd)

}
.

Next, if V is embedded in Cp0 (Ω,Rd), then GV is a subgroup of Diffp,∞0 (Ω).

Metamorphosis [63, Chapter 13] is an extension of LDDMM in the sense
that it considers a flow equation that jointly evolves shape and intensities:
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d

dt
Iν,ζt (x) = ζ

(
t, φν0,t(x)

)
Iν,ζ0 (x) = f0(x)

φν0,t ∈ GV is given by (26)

for x ∈ Ω and t ∈ [0, T ]. (28)

One can show that (28) has a unique solution t 7→ (φν0,t, I
ν,ζ
t ) ∈ GV × X

[60, 11], so the above construction can be used for deforming images.

3.2 Deformable templates by metamorphosis

The aim here is to solve (16) with time discretised data. Following [25], the
idea is to adopt the independent trajectory approach outlined in section 2.3.3,
so the inverse problem can be reformulated as a sequence of indirect regis-
tration problems (18). Hence, the task reduces to recovering and matching
a template f0 independently to data gj in the sense of joint reconstruction
and registration (indirect registration). One could here consider various ap-
proaches for indirect registration, see [61, 14] for surveys, and [25] uses meta-
morphosis for this step.

The above considerations lead to the following variational formulation:

(θ̂1, . . . , θ̂n) ∈ arg min
θ1,...,θn∈V×X

{ n∑
i=1

L
(
Aj
(
Wθj (f0)

)
, gi

)
+λ‖ν‖22 + τ‖ζ‖22

}
. (29)

The template f0 ∈ X and data g1, . . . , gn ∈ Y are related to each other as
in (2) and the deformation operator Wθj : X → X, which is parametrised by
θj := (ν(tj , ·), ζ(tj , ·)) ∈ V ×X, is given by the metamorphosis framework as

Wθj (f0) := φν0,ti .I
ν,ζ
ti where (φν0,t, I

ν,ζ
t ) ∈ GV ×X solves (28). (30)

The group action in (30) is usually the geometric one in (23).
The approach taken in [25] is based on solving (29) by a scheme that

intertwines updates of the image with updates of the deformation parameter.
The latter involves solving an indirect registration problem and a key part of
[25] is to show that indirect registration by metamorphosis has a solution [25,
Proposition 4] (existence) that is continuous w.r.t. data [25, Proposition 5]
(stability) and convergent [25, Proposition 6]. As such, the updates of the
deformation parameter by metamorphosis based indirect registration is a well
defined regularisation method in the sense of [23]. Likewise, the updates of
the image is by a variational method that defines a well defined regularisation
method, so both updates of the intertwined scheme for solving (29) are by
regularisation methods.
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Figure 1 shows results of the above method applied to (gated) 2D tomo-
graphic data with a spatiotemporal target image. We see that (29) can be
used for spatiotemporal reconstruction even when (gated) data is highly un-
der sampled and incomplete. In particular, one can recover the evolution of
the target regarding both shape deformation and photometric changes. The
latter manifests itself in the appearance of the white disc.

3.3 Spatiotemporal reconstruction with LDDMM

The aim here is to solve (16) with time continuous data by a variational
formulation of the type (17). Following [13], Wθt : X → X in (17) (deforma-
tion operator) is given by the LDDMM framework, so it is parametrised by
θt := ν(t, ·) ∈ V for some ν ∈ L2 ([0, T ], V ) as

Wθt(f0) := φν0,t.f0 for f0 ∈ X and φν0,t ∈ GV as in (26). (31)

The variant of (17) considered by [13] is now

arg min
f0∈X

t 7→θt∈L2([0,T ],V )

{∫ T

0

[
L
(
A
(
t,Wθt(f0)

)
, g(t, ·)

)
+ τ

∫ t

0

∥∥θs∥∥2V ds

]
dt+ Sγ(f0)

}
.

(32)
Note that evaluating Wθt(f0) requires solving the ODE in (26), so (32) is an
ODE constrained optimisation problem.

The temporal regulariser T τ (t, ·) : V → R in (17) is given by

T τ (t, θ) := τ

∫ t

0

∥∥θs∥∥2V ds for fixed τ > 0,

and Sγ : X → R is the spatial regulariser (typically is of Tikhonov type). In
fig. 2 we show results from [13] on using (32) for spatiotemporal reconstruc-
tion in tomography.

We conclude by pointing out that the model in (32) can also be stated as
PDE constrained optimal control problem as shown in [13, Theorem 3.5], see
also [36]. If θt = ν(t, ·) ∈ V for some velocity field ν ∈ L2 ([0, T ], V ), then
(32) where the deformation operator in (31) is given by the geometric group
action in (23) is equivalent to

min
f0∈X
t 7→θt∈V

{∫ T

0

[
L
(
At
(
f(t, ·)

)
, g(t, ·)

)
+ τ

∫ t

0

∥∥θs∥∥2V ds

]
dt+ Sγ(f0)

}
s.t. ∂tf(t, ·) +

〈
∇f(t, ·), θt

〉
Rn = 0.

f(0, ·) = f0.
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In a similar manner, if the group action is the mass-preserving as in (24),
then (32) becomes

min
f0∈X
t7→θt∈V

{∫ T

0

[
L
(
At
(
f(t, ·)

)
, g(t, ·)

)
+ τ

∫ t

0

∥∥θ2∥∥2V ds

]
dt+ Sγ(f0)

}
s.t. ∂tf(t, ·) +∇ ·

(
f(t, ·) θt

)
= 0.

f(0, ·) = f0

This establishes the connection between ODE based approaches discussed
in this section and PDE based approaches that are discussed in section 4.
As such, it illustrates how one can switch between a reconstruction method
based on deformable templates and one based on a motion model (remark 3).

4 Approaches based on partial differential equations

In some applications it is reasonable to assume that the underlying motion
is governed by a physical phenomena that can be described by a suitable
equation, like a PDE. Such an equation can then be used to constrain the
motion of the reconstructed target image. Focus here is therefore on joint re-
construction and motion estimation as formulated in (13). It has been shown
that a joint approach that simultaneously recovers the image sequence and
the motion offers a significant advantage over subsequently and separately
applying both methods [9].

4.1 Physical motion constraints

A common model for motion is given by the transport equation
∂f

∂t
(t, x) +∇ ·

(
ν(t, x)f(t, x)

)
= 0,

f(0, x) = f0(x)

for x ∈ Ω and t ∈ [0, T ]. (33)

Here, f(t, ·) : Ω → R is the spatiotemporal image at time t contained in X
and the velocity field ν(t, x) : Ω → Rd models the velocity with which points
at x move at time t. The motion model is then given by the underlying
equation in (33), which in turn yields the motion constraint

Ψν

(
f(t, ·)

)
:=

∂f

∂t
(t, ·) +∇ ·

(
ν(t, ·)f(t, ·)

)
= 0 on Ω ⊂ Rd. (34)
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This equation is generally referred to as continuity equation and it assumes
mass preservation. Hence, with this model mass can only be continually trans-
formed, no mass can be created, destroyed, or teleported.

A more restrictive model can be directly obtained from (34) under the
assumption of incompressible flows, or in our context brightness constancy.
We give here an alternative derivation, assuming a constant image intensity
f(t, x) along a trajectory t 7→ x(t) with velocity ẋ(t) = ν(t, x), thus we obtain

0 =
df

dt
=
∂f

∂t
+

d∑
i=1

∂f

∂xi

dxi
dt

= ∂tf +∇f · ν. (35)

This equation is also called the optical flow constraint and it is a popular
approach to model motion between consecutive images [29]. In the following
we will base the motion constrained reconstruction as formulated in (13)
on the continuity equation (34), either assuming mass conservation or the
stronger assumption of brightness constancy in form of the optical flow model.
For both models, the time dependent parametrisation of the motion model
is by velocity fields, i.e., the motion model is given as Ψθt

(
f(t, ·)

)
where

θt := ν(t, ·) for some sufficiently regular velocity field ν : [0, T ] × Ω → Rd
(motion field). Henceforth, we use the notation Ψν := Ψθt .

4.1.1 Joint motion estimation and reconstruction

A joint model for motion estimation and tomographic reconstruction can,
based on the motion constrained model in (13), be formulated for p ∈ {1, 2}
and q, r > 1 as

arg min
t 7→f(t,·)∈X
t 7→ν(t,·)∈V

∫ T

0

[
1

p

∥∥∥A(t, f(t, ·)
)
− g(t, ·)

∥∥∥p
p

+ α
∣∣f(t, ·)

∣∣q
BV

+ β
∣∣ν(t, ·)

∣∣r
BV

]
dt,

s.t. Ψν

(
f(t, ·)

)
= 0 on Ω ⊂ Rd.

(36)

Here we use for both image sequence and vector field the respective total
variation as a regulariser, given by the semi-norm in the space of bounded
variation. Consequently, given fixed domain Ω ⊂ Rd, the spaces under consid-
eration here are X = BV(Ω,R) for the reconstructions and V = BV(Ω,Rd)
for the corresponding vector field. Other models can be considered such as L2-
regulariser for the mass conservation or other convex regulariser, see [9, 16]
for details. We furthermore assume the forward operator A(t, ·) : X → Y to
be a bounded linear operator to some Hilbert space Y . In particular, it can
be time dependent [8, 20].

The motion constraint in (34) is used to describe how image sequence and
vector fields are connected. From the perspective of tomographic reconstruc-
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tions, the motion constraint acts as an additional temporal regulariser along
the motion field ν. Instead of imposing the motion constraint exactly as in
(36) we can also relax it and add as a least-squares term to the functional
itself, cf. [9].

In order to establish existence of minimisers of (36), we need ensure ap-
propriate weak-star compactness of sublevel sets and lower semicontinuity.
We will restrict the following results here now to dimension d = 2. For the
minimisation we consider the space

D :=
{

(f,ν) ∈ Lmin{p,q}([0, T ];X
)
× Lr ([0, T ];V ) |

‖ν‖∞ ≤ cv <∞ and ‖∇ · ν‖E ≤ cd
}
, (37)

where E is a Banach space continuously embedded into Lm([0, T ];Lk(Ω,Rd)),
k > p and m > q∗ with q∗ being the Hölder conjugate of p. We can now state
an existence result for the joint model (36) that is proved in [9].

Theorem 1 (Existence of minimisers to (36)) Given a linear forward oper-
ator A(t, ·) : X → Y , p ∈ {1, 2} and dimension d = 2, let 1 < q, r and

J (f,ν) :=

∫ T

0

[1

p

∥∥A(t, f(t, ·)
)
− g(t, ·)

∥∥p
p

+ α|f(t, ·)|qBV + β|ν(t, ·)|rBV

]
dt.

Furthermore, let A be such that it does not eliminate constants, i.e. A(t,1) 6=
0 for all t ∈ [0, 1]. Then, there exists a minimiser of J (f,ν) in the constraint
set

S :=
{

(f,ν) ∈ D | Ψν(f) = 0
}

where D is given as in (37).

The proof for p = 2 follows from [16, 9] and the case for p = 1 follows similar
arguments as outlined in [20]. Existence for the unconstrained case is proved
by incorporating the constraint as a penalty term in the functional J as
shown in [9]. We note here that the choice q, r > 1 has to be made in the
analysis in order to avoid dealing with measures in time. In the computational
use cases considered below, it is however reasonable to set q = r = 1.

4.1.2 Implementation and reconstruction

For computational reasons, as well as to allow slight deviations from the
motion model, it is advantageous to consider a penalised version instead of
the constrained formulation (36). Then the joint minimisation problem for
spatiotemporal reconstructions can be written as
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arg min
t7→f(t,·)∈X
t7→ν(t,·)∈V

∫ T

0

[1

p

∥∥A(t, f(t, ·)
)
− g(t, ·)

∥∥p
p

+ α|f(t, ·)|BV + γ
∥∥Ψν

(
f(t, ·)

)∥∥
1

+ β|ν(t, ·)|BV

]
dt, (38)

where convergence to the constrained model is given for γ →∞. In practice,
the BV-semi-norm is replaced by the discrete isotropic total variation.

As the penalised formulation depends on the motion model Ψν(f), the
energy to be minimised is nonlinear and therefore non-convex. Additionally, it
is non-differentiable due to the involved L1-norms and hence the computation
of a solution to (38) is numerically challenging. Thus, in practice it is advised
to compute solutions using an intertwined scheme, which means that we split
the joint model into two alternating optimisation problems, one for f and
the other for ν:

fk+1 = arg min
t 7→f(t,·)∈X

∫ T

0

[1

p
‖A(t, f)− g‖pp + α|f |BV + γ ‖Ψνk(f)‖1

]
dt (39)

νk+1 = arg min
t 7→ν(t,·)∈V

∫ T

0

[∥∥Ψν(fk+1)
∥∥
1

+
β

γ
|ν|BV

]
dt. (40)

Most importantly, both subproblems are now linear and convex, but we note
that the solution of the alternating scheme might correspond to a local min-
ima of the joint model. In practice, one would initialise f0 = 0 and ν = 0,
then the first minimisation problem for f1 corresponds to a classic total vari-
ation regularised solution for each image time instance separately followed by
a motion estimation. Reconstructions from [8] using this alternating scheme
for experimental µCT data are shown in Figure 3 and an illustration of the
influence of Lp-norms in the data fidelity in Figure 4.

One can use any optimisation algorithm that supports non-differentiable
terms for computing solutions to each of the subproblems (39) and (40). In
dimension d = 2 one could simply use a primal-dual hybrid gradient scheme
[10] as outlined in [8], see also [3], here both applications use the optical flow
constraint (35). In higher dimensions where the computational burden of
the forward operator becomes more prevalent, it is advised to consider other
schemes with fewer operator evaluations, we refer to [40] for an application
to dynamic 3D photoacoustic tomography as well as [17] for dynamic 3D
computed tomography.

To conclude this section, we mention that in other applications it might
be more suitable to require mass conversation using the continuity equation
instead, see for instance [35].
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5 Data driven approaches

The variational approaches outlined in sections 2.1 to 2.3 come with two se-
rious drawbacks that limit their applicability. First, they typically result in
complex non-convex optimisation problems that are difficult to solve reason-
ably fast in time-critical applications. Second, they rely on a handcrafted
family of parametrised temporal models that need to be computationally
feasible, yet expressive enough to represent relevant temporal evolution.

Data driven models, and especially those based on deep learning, offer
means to address these drawbacks. Once trained, a deep learning model is
typically very fast to apply. Next, its large model capacity also allows for
capturing complicated temporal evolution that is otherwise difficult to ac-
count for in handcrafted models. Embedding a deep learning model into a
spatiotemporal reconstruction method is however far from straightforward.

Section 5.1 outlines how to do this in the context of the reconstruction
method in section 2.1. The situation is more complicated for reconstruction
methods that use explicit temporal models. These methods rely on joint op-
timisation of the image and the temporal model, so the latter needs to be
parametrised. Embedding a deep learning based temporal model is therefore
only feasible if said parametrisation is preserved and most existing deep learn-
ing approaches for temporal modelling of images do not fulfil this require-
ment. Section 5.2 surveys selected deep learning models for deformations that
can be embedded into reconstruction methods that use a deformable template
(section 2.3). Finally, section 5.3 considers embedding deep learning based
models into reconstruction methods that use motion models (section 2.2).

5.1 Data driven reconstruction without temporal modelling

A data driven approach for solving (1) starts by considering a family {Rϑ}ϑ∈X
of reconstruction operators Rϑ(t, ·) : Y → X. In deep learning, Rϑ is repre-
sented by a deep neural network with network parameters ϑ. The learning
amounts to finding the reconstruction operator Rϑ̂(t, ·) : Y → X where ϑ̂ ∈ X
is learned from (supervised) training data as

ϑ̂ ∈ arg min
ϑ∈X

L(ϑ) where L(ϑ) :=

N∑
i=1

∫ T

0

`X

(
Rϑ
(
t, gi(t, ·)

)
, fi(t, ·)

)
dt.

(41)
Here, `X : X×X → R quantifies goodness-of-fit of images and t 7→ gi(t, ·) ∈ Y
and t 7→ fi(t, ·) ∈ X for i = 1, . . . , N represent ground truth spatiotemporal
image and corresponding noisy data, i.e.,

t 7→ (fi(t, ·), gi(t, ·)
)
∈ X × Y satisfy (1) for i = 1, . . . , N . (42)
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A key component is to specify the appropriate (deep) neural network ar-
chitecture for Rϑ(t, ·) : Y → X. One option is to set Rϑ := Pϑ ◦A† where
A†(t, ·) : Y → X is a (non-learned) reconstruction operator for solving (1) and
Pϑ(t, ·) : X → X is a data driven post-processing operator [28, 31]. Hence,
the input to the data driven part is a spatiotemporal image and the output
is an ‘improved’ spatiotemporal image. Such a model is trained against su-
pervised data consisting of pairs of spatiotemporal images, one representing
ground truth and the other the output from said reconstruction method. Al-
ternatively, one can learn an updates in an unrolled iterative scheme that is
derived from some fixed point-scheme for solving (4) as in [55]. This includes
a handcrafted forward operator, which in [55] is time independent (Fourier
transform) but its sampling in M depends on time. Such an approach needs
supervised training data of the form (42) for its training.

Common for both approaches is that the neural network architecture does
not make use of any explicit deformation/motion model. As such, they rep-
resent data driven variants of methods outlined in section 2.1.

5.2 Learning deformation operators

Focus here is on using a deep learning model in a reconstruction method that
uses a deformable template (section 2.3). One possibility is to use deep learn-
ing to model the time evolution t 7→ θt of the deformation parameter, which
is the approach (deep diffeomorphic normalising flow) taken in [53]. Another
option is to use possibility in defining the parametrised deformation opera-
tor Wθt : X → X in (15). Our emphasis is on the latter, which essentially
amounts to considering deep learning approaches for image registration.

There is a rich theory of variational approaches to image registration, see
the books [24, 63] and surveys in [47, 33]. The common trait with these ap-
proaches is that deformation models are parametrised. A variational problem
is then formulated to select the ‘best’ deformation by regularising the defor-
mation itself to avoid overfitting while ensuring adequate match between the
template and target images. Recently, there are also many publications that
consider deep learning for image registration, see [58, 37, 21, 27] for surveys.
Most of these learn a deformation operator directly from pairs of template
and target images without accounting for any specific parametrisation, i.e.,
the learned deformation operator is not parametrised by a deformation pa-
rameter1.

A key aspect is that the trained deep neural network is parametrised ex-
plicitly with a (deformation) parameter and it does not require re-training

1 The temporal model is defined by considering a time dependent deformation parameter.
The deep neural network representing the deformation operator also has parameters, but

these are not the same as the deformation parameter. In particular, the network parameters

are set during training. In contrast, the deformation parameter varies with time.
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when the (deformation) parameter changes. Such a data driven model can
be used in reconstruction with deformable templates as shown in [38, 48] for
the case when data is time discretised. Both these approaches start out by
stating a variational model of the type (17), which is then solved using an
intertwined approach of the type (22). Here one considers diffeomorphic de-
formations as defined by the LDDMM framework, i.e., deformation operators
are parametrised as in (47). A key part is the usage of deep learning based
deformation operators that are of the same form, i.e., the trained deep neural
network retains the parametrisation in (31). In the following, our emphasis is
on deep learning models for registration that adhere to a specific pre-defined
parametrisation. Stated more precisely, one seeks to use a data driven model
for these deformation operator that belongs to a pre-defined parametrised
family {Wθ}θ∈Θ.

One way to achieve the above is by learning a mapping Λϑ : X ×X → Θ
that predicts the deformation parameter necessary for deforming a template
to a target as

θ := Λϑ(f0, I) =⇒ Wθ(f0) ≈ I for f0, I ∈ X.

Note here that ϑ ∈ X is the deep neural network parameter that is set during
training. It is not the same as the deformation parameter θ ∈ Θ, which
parametrises the deformation operator Wθ : X → X and which is a control
variable in the variational approaches for reconstruction. In some sense, Λϑ
can be seen as a generative model for the deformation parameter.

The mapping Λϑ : X ×X → Θ can be trained in an unsupervised setting
given access to sufficient amount of training data of the form

(Ii, f i0) ∈ X ×X for i = 1, . . . , N (43)

by computing ϑ̂ ∈ X as

ϑ̂ ∈ arg min
ϑ∈X

L(ϑ) where L(ϑ) :=

N∑
i=1

`X

(
WΛϑ(fi

0,I
i)(f

i
0), Ii

)
. (44)

Here, `X : X ×X → R is a distance notion between images, e.g., the squared
L2-norm if X = L2(Ω). One can also add an additional regularisation term
to (44) that measures registration accuracy in the image space X.

Remark 5 One can also train Λϑ : X × X → Θ in an supervised setting as-
suming access to training data of the form

(Ii, f i0, θ
i) ∈ X ×X ×Θ where Ii ≈ Wθi(f

i
0) for i = 1, . . . , N . (45)

The network parameter ϑ ∈ X is trained against the supervised data in (45)

by computing ϑ̂ ∈ X as
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ϑ̂ ∈ arg min
ϑ∈X

L(ϑ) where L(ϑ) :=

N∑
i=1

`Θ
(
Λϑ(f i0, I

i), θi
)

(46)

Here, `Θ : Θ ×Θ → R is a distance notion between deformation parameters,
so Θ must have a metric space structure. Hence, the registration accuracy is
measured in the deformation parameter set Θ.

An example of this approach is Quicksilver [62], which considers deforma-
tion operators {Wθ}θ given by the LDDMM framework. Then, θ := ν(1, ·)
for some velocity field ν : [0, 1]×Ω → Rd and

Wθ(f0) := φν0,1.f0 with φν0,1 ∈ GV as in (26), (47)

and the group action is typically geometric (23) or mass preserving (24). It
is known that the vector field θ ∈ Θ that registers a template to a target
can be computed by geodesic shooting, see [42] and [63, Section 10.6.4]. The
registration problem, which is to find θ, thus reduces to finding the initial
momenta. Quicksilver [62] trains a deep neural network in the unsupervised
setting (as in (44)) to learn these initial momenta. The network architecture
for Λϑ : X × X → Θ is of convolutional neural network (CNN) type with
an encoder and a decoder. The encoder acts as a feature extraction for both
template and target images. The extracted features are then concatenated
and fed into the decoder, which consists of three independent convolutional
networks that predict the momenta for the three dimensions. To recover from
prediction errors, a correction networks with the same architecture is used for
predicting the prediction error. Training such a deep neural network model
with entire images is challenging, so Quicksilver only uses patches of images
as input. In this way, relatively few images and ground truth momenta re-
sult in a large amount of training data. A drawback is that the patches are
extracted from the target, template and deformation are on the same spatial
grid locations, so the deformed patch in the target is assumed to lie (predom-
inantly) in the same location as the one in the template image. This assumes
the deformation is relatively small.

Another similar approach is VoxelMorph [4] where training is performed
in an unsupervised manner (as in (44)) with only pairs of template and mor-
phed image. The output is the displacement field θ ∈ Θ necessary to register
a template against a target, e.g., using an LDDMM based deformation opera-
tor. VoxelMorph uses CNN architecture similar to U-net for Λϑ : X×X → Θ
that consists of encoder and decoder sections with skip connections. The un-
supervised loss (44) can be complemented by an auxiliary loss that leverages
anatomical segmentations at training time. The trained network can also
provide the registered image, i.e., it offers a deep learning based registration
operator. A further development of VoxelMorph is FAIM [32] that has fewer
trainable parameters (i.e., dimension of ϑ in FIAM is smaller than the one
in VoxelMorph). Authors also claim that FAIM achieves higher registration
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accuracy than VoxelMorph, e.g., it produces deformations with many fewer
‘foldings’, i.e. regions of non-invertibility where the surface folds over itself.

One may also learn the spatially-adaptive regulariser that is used for defin-
ing the deformation operator [46]. See also [44] for a closely related approach
where one learns the regulariser in the LDDMM framework, which is the
Riemannian metric for the group GV in (27).

The above approaches all avoid learning the entire deformation, instead
they learn a deformation that belongs to a specific class of deformation mod-
els. This makes it possible to embed the learned deformation model in a
variational model for image reconstruction.

5.3 Learning motion models

The methods mentioned here deals with using deep learning in reconstruction
with a motion model (section 2.2). Many of the motion models are however
sufficient for capturing the desired motion, so the main motivation with in-
troducing deep learning is to speed up these methods.

In particular, the above means we still aim to solve the penalised varia-
tional formulation (38) with an explicit temporal model, such as the continu-
ity equation (34). The network then essentially learns to produce the motion
field ν(t, ·) from the time series f(t, ·). Such a network can then be utilised to
estimate the motion field, instead of solving the corresponding sub-problem
(40) in the alternating minimisation. For instance, one could use neural net-
works that are designed to compute the optical flow [18, 30].

Another possibility is to account for the explicit structure of the PDE
by using networks that aim to find a PDE representation for given data [39].
Alternatively, one may build network architectures based on the discretisation
of the underlying equations as motivated in [2]. Finally, similar to the work
of joint motion estimation and reconstruction, one can learn a motion map
that is used in a learned reconstructions scheme [49].

6 Outlook and conclusions

The variational approaches outlined in sections 2.2 and 2.3, and then in
more detail in sections 3 and 4, rely on explicit parametrised temporal mod-
els. These temporal models are either given by deformation operators with
time dependent parameters (section 2.3) or through a motion model (sec-
tion 2.2). Powerful techniques from analysis and differential geometry can
be used to characterise regularising properties of these reconstruction meth-
ods. They also provide state-of-the-art results when applied to challenging
tomographic data that is highly noisy and/or incomplete. The methods are
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however difficult to use due to the computational burden and the sheer num-
ber of (regularisation) parameters that needs to be choosen.

Data driven temporal modelling offers a way to address the computa-
tional burden inherent in the variational approaches. Here, it is clear that
deep learning needs to be embedded in such a way that the resulting learned
temporal model is parametrised. VoxelMorph [4] and Quicksilver [62] are ex-
amples of how this can be done in the context of diffeomorphic deformation,
and [38, 48] show how such learned models can be used in reconstruction.
In the near future, we expect more development along these lines. Finding
appropriate training data however remains a key difficulty in data driven
approaches as in most dynamic imaging scenarios, there is no underlying
ground-truth data available. Thus, most likely one will need to resort to sim-
ulations for training these models. Possibly, one could utilise reconstructions
generated by variational approaches from experimental data as gold-standard
reference reconstructions for a training procedure. In conclusion, there is a
great need for dynamic digital phantoms that include both natural image
and motion features, that can serve as input for simulators.

A final challenge that applies to all reconstruction methods in dynamic
inverse problems is to formulate relevant validation and comparison protocols.
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25. Gris, B., Chen, C., Öktem, O.: Image reconstruction through metamorphosis. Inverse
Problems 36(2), 025001 (27pp) (2020)

26. Hakkarainen, J., Purisha, Z., Solonen, A., Siltanen, S.: Undersampled dynamic x-ray

tomography with dimension reduction kalman filter. IEEE Transactions on Computa-
tional Imaging (2019)

27. Haskins G. Kruger, U., Yan, P.: Deep learning in medical image registration: a survey.
Machine Vision and Applications 31(8) (2020)

28. Hauptmann, A., Arridge, S., Lucka, F., Muthurangu, V., Steeden, J.A.: Real-time

cardiovascular mr with spatio-temporal artifact suppression using deep learning–proof

of concept in congenital heart disease. Magnetic resonance in medicine 81(2), 1143–
1156 (2019)

29. Horn, B.K., Schunck, B.G.: Determining optical flow. In: Techniques and Applications
of Image Understanding, vol. 281, pp. 319–331. International Society for Optics and
Photonics (1981)



24 Andreas Hauptmann and Ozan Öktem and Carola Schönlieb
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42. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy.

Journal of Mathematical Imaging and Vision 24(2), 209—228 (2006)
43. Mokso, R., Schwyn, D.A., Walker, S.M., Doube, M., Wicklein, M., Müller, T., Stam-

panoni, M., Taylor, G.K., Krapp, H.G.: Four-dimensional in vivo x-ray microscopy
with projection-guided gating. Scientific Reports 5(8727) (2014)

44. Mussabayeva, A., Pisov, M., Kurmukov, A., Kroshnin, A., Denisova, Y., Shen, L.,

Cong, S., Wang, L., Gutman, B.: Diffeomorphic metric learning and template op-
timization for registration-based predictive models. In: D. Zhu, J. Yan, H. Huang,

L. Shen, P.M. Thompson, C.F. Westin, X. Pennec, S. Joshi, M. Nielsen, T. Fletcher,

S. Durrleman, S. Sommer (eds.) MBIA 2019, MFCA 2019: Multimodal Brain Image
Analysis and Mathematical Foundations of Computational Anatomy, Lecture Notes

in Computer Science, vol. 11846, pp. 151–161 (2019)
45. Niemi, E., Lassas, M., Kallonen, A., Harhanen, L., Hämäläinen, K., Siltanen, S.: Dy-
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Ground truth (unknown) 256 × 256 pixel grey scale spatiotemporal target image.

Gated noisy tomographic projection data of spatiotemporal target image. We sample
the parallel beam ray transform at time ti using 10 angles randomly distributed in

[(i− 1)π/10, iπ/10]. Data is corrupted with Poisson noise.

Image trajectory obtained by solving (29)

Shape trajectory obtained by solving (29)

Photometric trajectory obtained by solving (29)

Filtered back projection (FBP) (left) and TV (middle) reconstructions from concatenating
the 10 gated data sets (right), i.e., sampling the ray transform at 100 angles in [0, π].

Fig. 1 Spatiotemporal reconstruction using metamorphosis. Top row shows the target

image we seek to recover at five (out of 20) selected time points in [0, 1]. 2nd row shows
corresponding gated tomographic data. 3rd row shows the reconstruction of the target at

these time points obtained from (29). 4:th and 5:th rows show the corresponding shape and

photometric trajectories. Bottom row shows reconstructions assuming a stationary target.
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Gate 1 Gate 2 Gate 3 Gate 4

Ground truth spatiotemporal image of a heart phantom at four gates.

LDDMM reconstruction of spatiotemporal images from gated tomographic data.

ROI in ground

truth (gate 3)

ROI in LDDMM

reco. (gate 3)

ROI in TV

reconstruction

TV reco.

Fig. 2 Spatiotemporal reconstruction using LDDMM from gated tomographic data of a
heart phantom obtained by solving (32). The heart phantom is a 120 × 120 pixel image

with grey-values in [0, 1] that is taken from [24]. Data is gated 2D parallel beam tomogra-

phy where the i:th gate has 20 evenly distributed directions in [(i− 1)π/5, π+ (i− 1)π/5].
Data (not shown) also has additive Gaussian white noise corresponding to a noise level

of about 14.9dB. Bottom row compares outcome at an enlarged region of interest (ROI).

The ground truth (bottom leftmost image) is compared against LDDMM reconstruction
(2nd image from left) and TV reconstruction (3rd image from left). The latter is computed

assuming a stationary spatiotemporal target and corresponding full image is also shown

(bottom rightmost). It is clear that the cardiac wall is better resolved using a spatiotem-
poral reconstruction method. This is essential in CT imaging in coronary artery disease.
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Ground truth spatiotemporal image at three time steps 7, 18, 25 out of 30.

Single angular sampling Double angular sampling Random sampling

Reconstructions and data from two consecutive angular sampling schemes with one and two
source-detector pairs (left and middle) and a sampling scheme with only one measurement

at each time instance from a randomly (uniformly) chosen direction (right). The data over

time is shown to the left and reconstructions for time point 18 are shown to the right.

Fig. 3 Reconstructions from [8] of experimental X-ray data using the approach in (38)
with an optical flow constraint. Top row shows the ground truth spatiotemporal image and

bottom row shows data and reconstruction for three sampling schemes.

L1 fidelity term L2 fidelity term

Fig. 4 Reconstruction results for the random sampling with both p = 1, 2 for the fidelity

term in (38) for time points 17 and 25. The left images show that L1-norm clearly favours
sparse reconstructions with a resulting sparse motion field. In contrast, the L2-norm shown

in the right favours smoother reconstructions and motion fields.
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