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Abstract. This work applies Bayesian experimental design to selecting optimal projection
geometries in (discretized) parallel beam X-ray tomography assuming the prior and the additive
noise are Gaussian. The introduced greedy exhaustive optimization algorithm proceeds sequentially,
with the posterior distribution corresponding to the previous projections serving as the prior for
determining the design parameters, i.e. the imaging angle and the lateral position of the source-
receiver pair, for the next one. The algorithm allows redefining the region of interest after each
projection as well as adapting parameters in the (original) prior to the measured data. Both A and
D-optimality are considered, with emphasis on efficient evaluation of the corresponding objective
functions. Two-dimensional numerical experiments demonstrate the functionality of the approach.
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1. Introduction. Tomographic image reconstruction is a classical inverse prob-
lem with its history spanning over 100 years since the seminal work of Radon [27]. It
gives rise to a wealth of applications in modern imaging for which research remains ac-
tive to date. The contemporary mathematical questions are often driven by practical
challenges such as limited data — consider, e.g., having a limited number of imag-
ing angles or a limited field-of-view. There exists a number of proposed methods for
image reconstruction given such incomplete data, however, much less is known about
how to optimally design the imaging configuration if there are constraints on, e.g., the
number of angles, if individual projections do not cover all of the imaged object, or
if there is a particular region of interest (ROI) that may vary as a function of time.
Such design is desirable in any application where the exposure to radiation must be
minimized or the acquisition of data is otherwise expensive.

Optimal experimental design (OED) is also an extensive field of research with a
massive body of literature; for a general introduction we refer to [5]. In particular,
OED in inverse problems has taken leaps during the last decade due to the increase
in computational resources. In the present paper, we adopt the Bayesian paradigm
to inverse problems, that is, the observed data is used to update the prior knowledge
about the unknown into a posterior probability distribution [22, 31]. OED in Bayesian
inference is formulated as minimization of a Bayesian cost with respect to the design
parameters [10]; different cost functions correspond to different optimality criteria.
Here we focus on the two most common approaches: A-optimality, where a typical
quadratic loss is considered, and D-optimality, which maximizes the Kullback–Leibler
divergence of the posterior distribution with respect to the prior.
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For general high-dimensional inference problems, the minimization of the Bayes
cost requires a huge computational effort since just evaluating the cost corresponds
to (numerically) integrating the considered cost function against the joint probability
distribution of the unknown and the data. Considerable effort has been put into
formulating approximative schemes to solve the corresponding optimization task; in
the framework of inverse problems this work is discussed below. However, for linear
Bayesian inference problems with Gaussian prior and likelihood, it is well-known that
the integral defining the Bayes cost for A or D-optimality can be evaluated analytically
as the trace or the determinant of the posterior covariance, respectively, leading to
more attractive optimization problems [10]. This is the general setting considered in
this work.

1.1. Our contribution. Our paper focuses on discussing benefits of OED in
linear X-ray imaging. Our contributions to this subject are as follows:

• We propose a greedy exhaustive sequential method for optimizing the imaging
configuration in X-ray tomography in the spirit of [11] and discuss its efficient
numerical implementation. More precisely, our work proposes how to opti-
mize the next imaging angle and the lateral position of the source-receiver
pair if the geometric specifications of the previous projections are known. At
each step, the posterior covariance corresponding to the previous projections
is fed as the prior covariance for the optimization of the next imaging angle
and the lateral position. We discuss both A and D-optimal designs. As the
dimension of the new measurement at each step is considerably lower than
that of the unknown, the computational cost of evaluating the necessary pos-
terior traces and determinants can be significantly lowered by resorting to
the Woodbury matrix identity and the matrix determinant lemma without
employing Monte Carlo estimators (cf. [3, 4, 7]).

• If the covariance matrices for the (original) Gaussian prior and the additive
Gaussian noise process are known, the sequentially optimal projections can
be determined before performing any actual measurements. However, we
also introduce an optimization algorithm based on a varying ROI. Indeed,
the ROI can be adapted to the reconstruction after a new projection im-
age becomes available either algorithmically or based on expert knowledge,
and subsequently the next optimal projection can be determined accounting
for the change in the ROI. A related idea for the A-optimality criterion is
suggested in [11].

• We develop a data-driven variant of our optimization method that simulta-
neously adapts the (original) prior distribution to the data observed at each
step. As a numerical example, we demonstrate that the method is able to
identify the true correlation length used in generating an imaged target.

It should be emphasized that the forms of the optimization target functions cor-
responding to both A and D-optimality criteria are well-known [10]. However, linear
X-ray imaging provides an interesting example for further analysis of the setting, not
only due to its high-dimensionality, but also since the design space (i.e. the projec-
tion geometry) is continuous by nature, which leads to challenging computational
considerations. We adopt a sequential approach to the optimization due to its com-
putational tractability and in order to include feedback from the observed data in the
design process. Notice that sequential optimization is in general suboptimal if the
total number of projections is fixed a priori and no feedback from the measured data
is included in the process [19].
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1.2. Literature review. In recent years, OED for large-scale inverse problems
has gained substantial attention; see, e.g., [2, 3, 4, 6, 12, 13, 14, 16, 20, 23, 24, 25].
In particular, we acknowledge that the study of A and D-optimal designs has been
extended to infinite-dimensional Hilbert spaces in [1]. The computational feasibility
of experimental design in large-scale problems is often based on linearization and the
use of Monte Carlo trace estimators such as the ones developed in [7]. However, there
is also an interesting avenue of research presented in [17, 18, 19], where the authors
develop design methods based on dynamical programming.

Optimization of projection angles in X-ray imaging has previously been considered
in [28]. The authors explore two interesting approaches for empirical A-optimal design
in constrained problems based on training data: On the one hand, they solve a sparse
design out of a predetermined set of angles, which is an approach aligned with previous
literature. On the other hand, they propose a gradient-based optimization scheme.
However, there seems to be no guarantee of being able to find a global optimum
and the presented numerical experiments are limited to two angles. The present
paper is closely related to [28] as our approach is also based on a prior. As novelties
compared to [28], we consider the lateral position of the source-receiver pair as a
second design parameter, our sequential design enables incorporating feedback from
the observed data in the process, and the exhaustive optimization algorithm facilitates
circumventing difficulties arising from the nonconvexity of the objective functions.
In fact, our numerical examples clearly demonstrate that the optimization of the
projection geometry in X-ray imaging suffers from the existence of local optima.

In terms of adaptivity, our work draws inspiration from [11], where A-optimal
sequential design for dynamical inverse problems is considered. Our setup can be
derived from [11] by assuming static noise-free dynamics. However, in [11] the adap-
tation of design is obtained by introducing a so-called monitor function that measures
the difference in the last two reconstructions. In our framework, the approach of [11]
would roughly correspond to choosing the ROI to be an area where such a difference
is high.

From an application’s point of view, our proposed method fits in the larger field of
sparse tomography [15, 30], but moreover to applications with strict dose limitations
and obstructions to the imaging region [9]. Such limitations might be due to safety
reasons, experimental environment, or even expensive beamtime at synchrotron facil-
ities [8]. For instance, in image-guided radiotherapy angles are chosen to radiate only
a cancerous region of interest, without damaging essential surrounding tissue, using
the knowledge obtained during the measurements, cf. [21]. Here, the proposed OED
framework could provide insights into treatment planning and creation of automated
algorithms to exclude critical regions from the beam direction.

This paper is organized as follows. In Section 2, we introduce our discretized
parallel beam framework for two-dimensional X-ray imaging. Section 3 reviews the
basics of finite-dimensional Bayesian OED and considers efficient numerical evaluation
of the objective functions corresponding to A and D-optimality. The greedy exhaustive
optimization algorithm and its adaptive variants are presented in Section 4. Finally,
the numerical experiments are documented in Section 5, and some conclusions are
drawn in Section 6. For completeness and to facilitate reading the paper, an appendix
presents brief derivations of the target functions for A and D-optimal designs.

2. Measurement model and its discretization. The measurements are mod-
eled as parallel beam tomography, where multiple parallel rays are directed into the
object D ⊂ R2, and the resulting intensities of the rays are measured at detectors [26].
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The attenuation is described by the equation

I = I0 exp

(
−
∫
L

uds

)
, (2.1)

where L is the line along which the considered ray travels, I0 is the intensity of the
X-ray before entering the object and u : D → R+ is the absorption. Obviously, (2.1)
can equivalently be given as

log(I0)− log(I) =

∫
L

u(x) ds.

In particular, the difference between the logarithms of the emitted and measured
intensities is typically considered as the available data when X-ray tomography is
tackled mathematically.

After discretizing the imaged domain into pixels, the forward operator, mapping
the discretized absorption to a single set of log-intensity measurements at the detec-
tors can be approximated by a matrix R ∈ Rm×n, where m and n are the number
of detectors and the number of pixels, respectively (see, e.g., [30]); typically the di-
mension of the unknown is higher than the number of pixels in a single projection
image, i.e. m � n. Each ray is parametrized by its (signed) distance s to the origin
and its angle φ, say, relative to the positive horizontal axis. For a single projection
image with m detectors, one thus needs to specify m + 1 parameters (s1, . . . , sm, φ).
We assume the rays/detectors to be equally spaced, but in our setting the complete
parallel beam source-receiver pair does not typically cover the whole domain, that is,
a single measurement with a given angle only produces a projection image of a part
of D.

Take note that R is very sparse, which makes corresponding matrix multiplica-
tions relatively inexpensive computationally. Moreover, at least if m .

√
n, it is

reasonable to expect that R has a full (effective) rank, i.e., rank(R) = m, with all
its singular values being of the same order of magnitude. In particular, no projection
matrix considered in our numerical experiments has a Euclidean norm based condition
number that is higher than 2.

We assume the domain D consists of three distinct regions:
• ROI: the area about which we want to recover information,
• Obstruction: a nuisance region that obstructs the propagation of X-rays,
• Background : the rest of the object.

By resorting to this kind of a division, one can model settings where only a certain
part of the target object is of interest. Such situations could arise, e.g., in a medical
application if one has already determined the location of an organ, tumor or other
abnormality that is to be further monitored. Moreover, in an industrial application
one may only be interested in a certain component or section of some structure. In
addition, the introduced division enables modeling obstructions that are difficult to
image through, such as thick bone structures or other highly attenuating materials.

3. Bayesian inversion and experimental design. In Bayesian inversion all
parameters carrying uncertainty are treated as random variables [22, 31]. The prior
probability distributions for these parameters reflect the available information before
the measurements are carried out. A measurement is modeled as a realization of a
random variable depending on both the noise process and the random parameters in
the forward model, as well as on the so-called design parameters that are deterministic
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and define the measurement setup. The Bayes formula is then employed to form the
posterior probability density that updates the prior based on the information in the
measurement. In our setting, the design variables are the projection angle and the
lateral position of the parallel beam source-receiver pair, and our ultimate aim is
to (sequentially) choose these parameters according to either the A or D-optimality
criterion of Bayesian experimental design [1, 10].

In this section, we only consider one step of the optimization process, that is,
we assume to have a prior covariance (or its inverse) at hand and we consider opti-
mally choosing the design parameters that define a single parallel beam projection.
The computational efficiency is in the focus of our attention. The actual sequential
optimization algorithm is presented in Section 4.

3.1. Bayes’ formula. Let y ∈ Rm represent the (noisy) projection image and
p ∈ R2 be the design variable, and suppose our prior information on the (discretized)
absorption distribution is encoded in a probability density πpr : Rn → R+. By Bayes’
formula, the posterior density for the (randomized) absorption X reads

π(x | y; p) =
π(y |x; p)πpr(x)

π(y; p)
, x ∈ Rn, (3.1)

where π(y | · ; p) : Rn → R+ is the so-called likelihood function and the normalizing
term in the denominator is the marginal density of the measurement Y evaluated at
the available data y.

In this work we assume the prior is Gaussian, i.e. X ∼ N (xpr,Γpr), and the
measurement can be modeled as a realization of the random variable

Y = R(p)X +N, (3.2)

where N ∼ N (0,Γnoise) is independent of X. Here, Γpr ∈ Rn×n and Γnoise ∈ Rm×m
are symmetric positive definite covariance matrices, xpr ∈ Rn is the prior mean for X,
and we have explicitly indicated the nonlinear dependence of the discrete measurement
matrix R(p) on the positioning of the parallel beam source-receiver pair. Under these
simplifying assumptions, the posterior in (3.1) is also Gaussian with the covariance
matrix and mean [22]

Γpost(p) =
(
Γ−1pr +R(p)TΓ−1noiseR(p)

)−1
, (3.3a)

x̂(p) = Γpost(p)
(
Γ−1pr xpr +R(p)TΓ−1noisey

)
, (3.3b)

respectively, as can be deduced by a straightforward completion of squares in (3.1).
Using the Woodbury matrix identity, these equations can alternatively be written as

Γpost(p) = Γpr − ΓprR(p)T
(
R(p)ΓprR(p)T + Γnoise

)−1
R(p)Γpr, (3.4a)

x̂(p) = xpr + ΓprR(p)T
(
R(p)ΓprR(p)T + Γnoise

)−1
(y −R(p)xpr), (3.4b)

which are computationally far more attractive than (3.3) if m � n, as is the case in
our setting. However, if one is interested in the inverse covariance Γpost(p)

−1, then
(3.3) should be used.

3.2. A and D-optimality. In Bayesian optimal experimental design, one of-
ten considers minimizing the expected squared distance of the unknown in a given
(semi)norm around some chosen point estimate, which corresponds to the so-called
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A-optimal design; in all our considerations, the point estimate of interest is the poste-
rior mean. The other commonly used alternative is to look for the D-optimal design,
that is, to maximize the information gain when the prior is replaced by the posterior.
See, e.g., [1, 10] for more details.

Assuming the employed seminorm is induced by the positive semidefinite matrix
ATA for a given A ∈ Rl×n, in our simple, i.e. Gaussian, linear and finite-dimensional,
setting, A-optimality corresponds to choosing a design parameter pA ∈ R2 satisfying

pA = arg min
p

tr
(
AΓpost(p)A

T
)
. (3.5)

On the other hand, D-optimality is equivalent to finding

pD = arg min
p

log
(
det Γpost(p)

)
, (3.6)

where the logarithm follows from the definition of D-optimality but it also makes the
numerical treatment of (3.6) considerably more stable as discussed in the following
subsection. For completeness, the deductions of (3.5) and (3.6) are presented in
Appendix A.

Since all pixels are of the same size in our discretized model, choosing A = I ∈
Rn×n to be the identity matrix leads to using (a scaled) L2(D)-norm as the distance
measure in (3.5). If one is only interested in the expected L2-accuracy of the posterior
mean over some specific ROI within D, one simply only needs to replace the diagonal
elements of A corresponding to the pixels in the complement of the ROI by zeros.
On the other hand, being only interested in the information gain in the ROI for
D-optimality corresponds to replacing Γpost(p) in (3.6) by the matrix obtained by
deleting the rows and columns of Γpost(p) corresponding to the uninteresting pixels.
We refer to Appendix A for the proof of this statement as well as for the exact
form of the information gain when the prior is replaced by the posterior, as it equals
− log det(Γpost(p)) only up to an affine transformation.

3.3. Evaluation of the target functionals. Since the target functionals in
(3.5) and (3.6) typically have multiple local minima, we choose a straightforward ap-
proach and perform an exhaustive search over a two-dimensional grid. In consequence,
the ability to efficiently evaluate the optimization targets becomes the top priority.
To this end, observe that the (effective) rank of the perturbation R(p)TΓ−1noiseR(p) in
(3.3) is presumably m since the measurement matrix R(p) corresponding to a single
parallel beam projection is expected to be of full rank with all its m singular values
being of the same order of magnitude (cf. Section 2). Hence, our plan is to employ the
matrix determinant lemma and the alternative formula for the posterior covariance
in (3.3) in order to only need to compute traces of inverses and log-determinants for
matrices of size m × m. In particular, there is no apparent reason for resorting to
Monte Carlo techniques, such as those in [3, 4, 7], because the low (effective) rank of
the perturbation R(p)TΓ−1noiseR(p) in (3.3) can be exploited explicitly.

With a suitable numbering of the pixels, the posterior covariance matrix can be
written in a block form as

Γpost =

[
ΓROI Γmix

ΓTmix Γrest,

]
=

[
(Γpost)11 (Γpost)12

(Γpost)21 (Γpost)22

]
∈ Rn×n, (3.7)

where ΓROI = (Γpost)11 and Γrest = (Γpost)22 are the (marginal) covariance matrices
for the pixels in the ROI and the rest of the image, respectively. We use a similar
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indexing for analogous block decompositions of other n×n matrices as well. Moreover,
as in (3.7), we often simplify the notation by not explicitly marking the dependence
on p.

Remark 3.1. Because our final product is a sequential optimization algorithm,
the prior covariance for an optimization step is usually the optimized posterior from
the previous one. Hence, having an explicit representation for Γ−1prior at hand is ar-
guably the most natural assumption for a single step of the algorithm; see (3.3). How-
ever, assuming m is of moderate size, Γprior can also be formed explicitly via (3.3)
without consuming too much time, and thus we assume to explicitly know Γprior in the
following. On the other hand, if the noise covariance is diagonal, as it is in all our
numerical experiments, knowing Γnoise is essentially the same as knowing Γ−1noise.

3.3.1. D-optimality. As discussed in Section 3.2, the aim of D-optimal design
with a preassigned ROI is to minimize

ΦD(p) := log
(
det ΓROI(p)

)
(3.8)

over p in a certain subset of R2. Recall that our aim is to efficiently evaluate ΦD(p)
at numerous p ∈ R2.

To begin with, observe that

det(Γpost) = det

[
ΓROI Γmix

0 Γrest − ΓTmixΓ−1ROIΓmix

]

= det(ΓROI) det(Γrest − ΓTmixΓ−1ROIΓmix),

where ΓROI is invertible as a nonempty diagonal block of a positive definite matrix.
In particular, Γrest − ΓTmixΓ−1ROIΓmix is the Schur complement of ΓROI, meaning that

Γ−1post =: Σ =

[
Σ11 Σ12

Σ21 Σ22

]
=

[
∗ ∗
∗ (Γrest − ΓTmixΓ−1ROIΓmix)−1

]
.

Altogether we thus have

det(ΓROI) =
det(Γpost)

det(Γrest − ΓTmixΓ−1ROIΓmix)
=

det(Σ22)

det(Σ)
,

and so one needs to consider evaluating the logarithms of det(Σ) and det(Σ22), both
of which depend on the design parameter p.

In the rest of this section, we explicitly mark which matrices depend on p. Ac-
cording to (3.3),

Σ(p) = Γ−1pr +R(p)TΓ−1noiseR(p),

Σ22(p) = (Γ−1pr )22 +R2(p)TΓ−1noiseR2(p),

where R(p) = [R1(p), R2(p)] ∈ Rm×n is a columnwise partitioning, with R1(p) cor-
responding to the ROI and R2(p) to the rest of the image. By virtue of the matrix
determinant lemma,

det(Σ(p)) = det
(
R(p)ΓprR(p)T + Γnoise

)
det(Γ−1noise) det(Γ−1pr ),

det(Σ22(p)) = det
(
R2(p)

(
(Γ−1pr )22

)−1
R2(p)T + Γnoise

)
det(Γ−1noise) det

(
(Γ−1pr )22

)
,
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where only the first determinants, respectively, depend on p. Moreover, the matrices
associated to these p-dependent determinants are only of size m×m, i.e. small.

To evaluate log det(ΓROI(p)), one thus needs to precompute Cholesky decompo-
sition for the (large) positive definite matrix (Γ−1pr )22 that is independent of p. Since

m, i.e. the number of columns in R(p)T , is assumed to be relatively low, this further
enables building the (small) Cholesky decompositions

C(p)C(p)T = R(p)ΓprR(p)T + Γnoise, (3.9a)

C̃(p)C̃(p)T = R2(p)
(
(Γ−1pr )22

)−1
R2(p)T + Γnoise (3.9b)

for all p on the employed grid. Finally, a straightforward algebraic manipulation gives

log
(
det(ΓROI(p))

)
= 2

m∑
j=1

(
log(c̃jj(p))− log(cjj(p))

)
+ c, (3.10)

where cjj(p) and c̃jj(p), j = 1, . . . ,m, are the diagonal elements of C(p) and C̃(p),
respectively, and c ∈ R is independent of p.

Observe that it is far more stable to numerically evaluate the sum of logarithms
in (3.10) than the products of the diagonal elements of the Cholesky factors needed
for computing det(ΓROI(p)) itself. Moreover, the constant c in (3.10) can be evaluated
by considering Cholesky decompositions for (Γ−1pr )22 and either Γpr or Γ−1pr ; the former
was already employed when building (3.9), and the latter neither poses any difficulties
if n is not huge. In fact, one can even evaluate the actual information gain when the
prior is replaced by the posterior for any p without too severely compromising the
computational efficiency; see Appendix A for further details. This makes it possible to
compare the information gains between different rounds of the sequential optimization
algorithm introduced in Section 4 below.

3.3.2. A-optimality. As discussed in Section 3.2, when aiming at an A-optimal
design, one needs to minimize

ΦA(p) := tr(AΓpost(p)A
T )

over p in a certain subset of R2 for a given A ∈ Rl×n. In our numerical tests presented
in Section 5, A = IROI ∈ Rn×n is an identity matrix with the diagonal elements
corresponding to the complement of the ROI replaced by zeros. Nevertheless, we
perform the following calculations for an unspecified A to maintain generality.

As in the case of D-optimality, we introduce a Cholesky decomposition

C(p)C(p)T = R(p)ΓprR(p)T + Γnoise ∈ Rm×m,

and then form an auxiliary matrix

B(p) = C(p)−1R(p)ΓprA
T ∈ Rm×l.

According to (3.4),

ΦA(p) = tr
(
AΓprA

T −B(p)TB(p)
)

= tr(AΓprA
T )− tr(B(p)TB(p)).

Hence, fundamental properties of the matrix trace allow the representation

ΦA(p) = c′ −
m∑
j=1

l∑
k=1

Bjk(p)2.
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Since c′ = tr(AΓprA
T ) does not depend on p, it does not affect the minimization

of ΦA(p). However, evaluating c′ does not considerably slow down the minimization
process as a whole because it needs only be done once; knowing c′ allows comparing
the minimal values of ΦA between different iterations of the sequential minimization
algorithm introduced in the following section.

4. Sequential optimization of measurements. In this section we present the
algorithm for sequentially optimizing the parallel beam projections for X-ray tomog-
raphy. We start with the basic algorithm that aims at finding the optimal projections
prior to having any measurements at hand. Subsequently, we consider the modifi-
cations needed if one wants to estimate a hyperparameter in the prior based on the
observed data or to change the ROI for the (k + 1)th optimization round based on
the reconstruction, i.e. the conditional mean (CM) estimate, computed from the first
k projections.

4.1. Basic algorithm. The algorithm is initialized by determining the dis-
cretization of D into n pixels, choosing the spacing of the m detectors/rays for a
single parallel beam projection, and specifying the covariance matrices Γ0 and Γnoise

for the Gaussian prior of the absorption coefficient and for the Gaussian noise model,
respectively.1 One also needs to choose the ROI, select the number of optimization
rounds, and determine how the design variable p ∈ R2 parametrizes a parallel beam
projection. In our numerical experiments, the first component of p corresponds to the
projection angle and the second one to the distance of the bisection of the parallel
beam source-receiver pair from the origin.

The optimization is performed sequentially, i.e., so that the posterior probability
density after the kth projection is used as the prior for choosing the (k + 1)th pro-
jection. At each step the target functional for A or D-optimality is evaluated for all
p on a two-dimensional optimization grid that also needs to be predetermined. The
particular p yielding the minimum value for the considered minimization target is
chosen as the optimal parameter, and subsequently the posterior covariance, i.e. the
prior covariance for the next optimization step, is formed according to (3.3) or (3.4).

The algorithm proceeds altogether as follows:
Algorithm 1.

Choose the covariances Γ0 and Γnoise for the initial Gaussian prior N (x0,Γ0) and
the noise model N (0,Γnoise). Select the ROI, the grid for p and the number of
optimization rounds K. Set Γpr = Γ0 and P = [ ].
for k = 1, . . . ,K do

for all p on the optimization grid do
Evaluate ΦD(p) or ΦA(p) as outlined in Section 3.3.

end for
Find the minimizer pk of the considered optimization target.
Append P = [P, pk].
Form the posterior covariance Γpost(pk).
Set Γpr = Γpost(pk).

end for
return P

The columns of the output matrix P ∈ R2×K define the K sequentially optimized
parallel beam projections. To be more precise, the (k + 1)th column of P defines

1The mean of the prior is not needed for the sequential optimization algorithm, unless it affects
the noise model.
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the A or D-optimal projection given the previous k projections, that is, each of the
optimized projections is (only) locally optimal. In particular, there is no reason to
expect that the found K parallel beam projections would be globally optimal [19]: It
is a simpler and computationally less demanding task to optimize the projections one
by one than to simultaneously find K parallel beam projections that are jointly A or
D-optimal. However, there is anyway reason to expect that the projections defined
by the columns of P are more optimal than, e.g., a random choice.

Due to the assumptions that the measurement model is linear with additive noise
and the prior and noise process are independent Gaussians, Algorithm 1 can be run
prior to performing any measurements. Hence, one may expect to have lots of compu-
tational time and resources for performing the sequential optimization of Algorithm 1
in an ‘offline mode’. However, it is also possible to change the ROI for the next opti-
mization step or to estimate some free parameters in the prior based on the previous
data or reconstruction as explained in the following two subsections.

4.2. Adaptive region of interest. If the sequentially optimal angles are not
determined before the measurements but as a part of the online imaging procedure,
the ROI may be altered between the optimization rounds based on the observations
of the expert running the algorithm and, e.g., interesting or alarming features in the
previous reconstruction. In this case, one also needs to give the initial prior mean
as an input and incorporate the computation of the CM estimate in each step of the
algorithm; see (3.3) and (3.4). Moreover, the natural output is no longer the sequence
of optimal projections but the final reconstruction, and the outer iterations should be
stopped by the operator of the algorithm.

Algorithm 2 (adaptive ROI).

Choose the covariances Γ0 and Γnoise as well as the mean x0 for the initial Gaus-
sian prior N (x0,Γ0) and the noise model N (0,Γnoise). Select the ROI and the
optimization grid for p. Initialize Γpr = Γ0, xpr = x0 and k = 0.
while satisfactory reconstruction has not been reached do

Set k ← k + 1.
for all p on the optimization grid do

Evaluate tr(IROIΓpost(p)IROI) or log(det(ΓROI(p))) as outlined in Section 3.3.
end for
Find the minimizer pk of the considered optimization target.
Observe new data y = R(pk)x+ nk, where nk is a realization of the noise.
Form the posterior covariance Γpost(pk) and the CM estimate x̂(pk).
Redefine (heuristically) the ROI based on x̂(pk).
Set Γpr = Γpost(pk) and xpr = x̂(pk).

end while
Set xrec = xpr and Γrec = Γpr.
return xrec and Γrec

It follows from basic Bayesian analysis that the sequentially updated reconstruc-
tion xrec ∈ Rn and the spread estimator Γrec produced by Algorithm 2 are the same
one would obtain by first collecting the data for all optimized projection angles and
only then computing the CM estimate and the posterior covariance in a single step.

4.3. Data-driven hyperparameter estimation. Suppose the original prior
covariance Γ0 = Γ0(ρ) ∈ Rn×n depends on a hierarchical parameter ρ ∈ Rl, the true
value of which is unknown. Our aim is to introduce an algorithm that alternates
between determining the optimal design parameter and the maximum likelihood es-
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timate for the hyperparameter based on the measured data. The latter step can be
considered as empirically adapting the prior at the same time as the sequential design
process is performed.

Denote by

Γms(ρ; p) = Γnoise +R(p)Γ0(ρ)R(p)T ∈ Rm×m

the covariance matrix of the measurement given the prior covariance Γ0(ρ) and the
projection matrix R(p). The marginal density of the measurement y conditioned on
ρ is hence given by

π(y | ρ; p) ∝ exp
(
− 1

2

(
log(det Γms(ρ; p))− (y −R(p)x0)TΓms(ρ; p)−1(y −R(p)x0)

))
,

where x0 ∈ Rn is the (original) prior mean. In consequence, having k ∈ N independent
measurements y1, . . . , yk corresponding to the design parameters p1, . . . , pk at hand
leads to

π(y1, . . . , yk | ρ; p1, . . . , pk) =

k∏
i=1

π(yi | ρ; pi) (4.1)

∝ exp
(
− 1

2

k∑
i=1

(
log(det Γms(ρ; pi))− (yi −R(pi)x0)TΓms(ρ; pi)

−1(yi −R(pi)x0)
))
.

After obtaining the latest measurement yk corresponding to the design parameter pk,
one can thus determine the latest maximum likelihood (ML) estimate ρk for the hy-
perparameter by maximizing (4.1) with respect to ρ.

In addition to the computational cost corresponding to maximizing (4.1), an
extra price one needs to pay for the empirical estimation of a hyperparameter is the
need to appropriately update the posterior for X to make it compatible with the
current ML estimate ρk. In other words, one needs to recompute the posterior from
a scratch: Γpost(ρk; p1, . . . , pk) is formed, e.g., via (3.3) or (3.4) with Γpr = Γ0(ρk),
Γnoise built from k diagonal blocks, and R(p) replaced by the ‘total projection matrix’
[R(p1)T , . . . , R(pk)T ]T .

Algorithm 3 (data-driven hyperparameter estimation).

Choose the covariance Γnoise for the noise model N (0,Γnoise) and the mean x0 for
the Gaussian prior. Initialize ρ0 ∈ Rl, Γpr = Γ0(ρ0), and set k = 0. Select the ROI
and the grid for p.
while e.g., a satisfactory reconstruction has not been reached do

Set k ← k + 1.
for all p on the optimization grid do

Evaluate ΦD(p) or ΦA(p) as outlined in Section 3.3.
end for
Find the minimizer pk of the considered optimization target.
Observe the data yk = R(pk)x+ nk, where nk is a realization of the noise.
Solve for the ML estimate ρk = arg maxρ∈Rlπ(y1, . . . , yk | ρ, p1, . . . , pk).
Form the posterior covariance Γpost(ρk; p1, . . . , pk) “from a scratch”.
Set Γpr = Γpost(ρk; p1, . . . , pk).

end while

Computing the ML estimate ρk is relatively straightforward: When k = 1, one
needs to pay some attention to make sure the employed minimization technique for
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finding ρ1 is not very slow and does not diverge in case there is not much information
on the whereabouts of the true parameter value to begin with. However, when ρk for
k ∈ N is available, it can be used as the initial guess for finding ρk+1 by the Newton’s
method that exhibits fast convergence in our numerical experiments, where ρ is the
correlation length for a certain parametrized covariance structure. If the elementwise
derivatives of Γ0(ρ) are known, the required first two derivatives for the term in the
exponent of π(y1, . . . , yk | ρ, p1, . . . , pk) can be straightforwardly evaluated by resorting
to differentiation formulas for the determinant and the matrix inverse. Altogether,
finding the needed ML estimates poses no severe computational difficulties if m is
relatively small and l = 1, as is the case in our numerical studies.

5. Numerical experiments. In all our tests, D = [0, 1]2 is the unit square
divided into a uniform mesh of n = N2 pixels. The maximal distance of X-rays
passing through D from its center point (0.5, 0.5) is set to 0.5. If D contains an
obstruction that blocks X-rays, the rows corresponding to the lines passing through the
obstruction are deleted from the considered projection matrices, as the corresponding
measurements do not carry any information on the unknown absorption and can thus
be ignored. Hence, the number of active detectors may vary as a function of the
position of the parallel beam source-receiver pair relative to the possible obstruction,
which is taken into account when optimizing the optimal projections and computing
related reconstructions. (It should be intuitively clear that optimal parallel beam
projections try to avoid imaging through an obstruction whenever possible.)

The (initial) prior covariance between the remaining pixels is assumed to be of
the form

(Γ0)i,j = γ2 exp

(
−|xi − xj |

2

2`2

)
, (5.1)

where | · | denotes the Euclidean norm, ` > 0 is the so-called correlation length and
γ > 0 is the pixelwise standard deviation. Here xi and xj are the coordinates of the
pixels (or more specifically the pixel centers) with indices i and j. Loosely speaking,
the larger ` is, the less oscillating are random draws from the (initial) prior N (x0,Γ0).
The components of the additive noise in (3.2) are assumed to be independent with a
common standard deviation σ > 0.

5.1. Test 1: Basic algorithm. Our first numerical tests consider the basic ver-
sion of our optimization routine, i.e. Algorithm 1. The aim is to demonstrate that
the algorithm generates sequentially A-optimal parallel beam projections that are in-
tuitively acceptable and clearly outperform random selections. Moreover, according
to our tests, the optimization of projections can be performed using a considerably
coarser discretization compared to the one used for computing the actual reconstruc-
tions, without significantly compromising the overall performance of the approach.
Regarding D-optimality, it is numerically demonstrated that the sequential optimiza-
tion scheme may sometimes lead to globally suboptimal sets of projections, although
in many cases the sets of sequentially A and D-optimal projections are actually qual-
itatively very similar. For completeness it should also be admitted that the possibil-
ity that sequentially A-optimal projections may also sometimes suffer from apparent
global nonoptimality cannot be excluded based solely on the presented results.

Test 1.1: Sanity check. Let us start by applying Algorithm 1 to the simplest
possible setting: the ROI is D, the parallel beam source-receiver pair is of the maximal
width 1, and there are no obstructions inside D. The number of pixels per edge of D is
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Fig. 5.1: Test 1.1. Left: Random draw from the zero-mean Gaussian prior with the
covariance structure (5.1) for γ = 1 and ` = 0.05. Right: Mean L2(D) reconstruction
errors over a sample of 1000 absorption targets as functions of the number of (noisy)
projections. The diamonds correspond to the A-optimal projections and the circles to
the D-optimal ones. The errorbars give the averages and standard deviations of the
corresponding mean L2(D) reconstructions errors for 1000 sequences of projections
with random angles.

chosen to be N = 100 corresponding to altogether n = 104 pixels, and the number of
individual detectors is m = 45 per a single projection image. The pointwise standard
deviation of the prior covariance in (5.1) is assumed to be γ = 1 and the correlation
length is chosen as ` = 0.05. A random draw from the prior probability distribution
of the absorption is visualized in the left-hand imaged of Figure 5.1. Here and in what
follows, we assume the prior has zero mean, which is physically unrealistic as such,
but mathematically this assumption simply corresponds to translating the coordinate
system in Rn by some given physically sensible, component-wise positive prior mean
x0. The standard deviation of the additive white noise is σ = 0.05.

Figure 5.2 presents the A and D-optimality target functionals as functions of
the projection angle over the first ten iterations of Algorithm 1. To be quite pre-
cise, a modified A-optimality target 1

N

√
ΦA is considered as it corresponds to the

expected L2(D) reconstruction error, and in case of D-optimality, the depicted quan-
tity is the actual information gain when the prior is replaced by the posterior. (The
maximization of the information gain is equivalent to minimizing ΦD, as explained in
Appendix A.) For both optimality criteria, the optimal angles are distributed rather
uniformly over the interval [−90, 90]◦ in such a way that the most recent projection
angle is always located around the midpoint of the widest angular interval with no
previous projections, which is intuitively what one would expect. It is noteworthy
that after two projections the target functionals have multiple local optima; there is
no reason to expect this would not be the case for more complicated imaging config-
urations as well.

The right-hand image of Figure 5.1 shows the mean L2(D) reconstruction errors
after each of the first ten A and D-optimal projections over a sample of 1000 target ab-
sorptions drawn from the assumed prior. To be more precise, the noisy measurements
are first simulated for each of the target absorptions and all optimal angles. Then, the
reconstructions, i.e. posterior means, are formed and compared to the corresponding
targets when including the simulated noisy projections in the reconstruction process
one by one in the same order as they were introduced by Algorithm 1. The A and D-
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Fig. 5.2: Test 1.1. Left: Modified A-optimality target 1
N

√
ΦA, corresponding to

the expected L2(D) reconstruction error, as a function of the projection angle for the
first ten projections. The dots denote the locally A-optimal angles and the algorithm
proceeds from top to bottom (cf. Figure 5.1). Right: Information gain −Φ̃D (cf. (A.4))
as a function of the projection angle for the first ten projections. The dots denote the
optimal angles and the algorithm proceeds from bottom to top.

optimal angles seem to perform equally well on average, even though the mean L2(D)
reconstruction error is precisely the quantity the A-optimal angles were designed to
minimize.

For comparison, random projection angles are also considered: the mean L2(D)
reconstruction errors over the considered sample of absorptions are computed for
1000 sequences of random projection angles, the components of which are picked
independently from the uniform distribution over [−90, 90]◦. The right-hand image
of Figure 5.1 illustrates the averages of the resulting mean L2(D) reconstruction
errors together with their standard deviations over the considered random sequences
of projection angles. According to Figure 5.1, the A and D-optimal projections clearly
outperform the random selections — at least in this simple geometric setting.

Test 1.2: Discoidal ROI. The second test is essentially a repetition of the first
one, but with a parallel beam source-receiver pair of narrower width 0.5 and the ROI
specified to be a disk of radius 0.25 centered at (0.6, 0.6); see the left-hand image of
Figure 5.3. Observe, in particular, that the positioning of the source-receiver pair can
now also be adjusted laterally and its width is the same as the diameter of the ROI.
The standard deviation of the noise is set to σ = 0.02, and the number of individual
detectors in the narrower parallel beam sensor is m = 23. The other parameters are
as in Test 1.1, that is, N = 100, γ = 1 and ` = 0.05.

Figures 5.4 and 5.5 visualize the first six sequentially A and D-optimal projections,
respectively, with the corresponding pixelwise (posterior) standard deviations shown
in the background. The A-optimal projections behave as intuitively as in Test 1.1: all
projections approximately cover the ROI and they are also distributed relatively uni-
formly over all angles. Although the D-optimal projections also cover the ROI, they
correspond to subsequent rotations of about 10◦ relative to one of the previous pro-
jections. Even though such projections are indeed locally D-optimal, they definitely
do not form a globally D-optimal set of projections: for example, the six sequentially
A-optimal projections in Figure 5.4 jointly produce a lower value for the D-optimality
target ΦD than the sequentially D-optimal ones in Figure 5.5. This demonstrates
that our sequential optimization procedure does not always produce parallel beam
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Fig. 5.3: Test 1.2. Left: ROI. Right: Mean L2(D) reconstruction errors over a sam-
ple of 1000 absorption targets as functions of the number of (noisy) projections. The
diamonds correspond to the A-optimal projections and the circles to the D-optimal
ones. The errorbars give the averages and standard deviations of the corresponding
mean L2(D) reconstructions errors for 1000 sequences of random projection that cover
the ROI.
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Fig. 5.4: Test 1.2. The first six sequentially A-optimal parallel beam projections
with the corresponding pixelwise (posterior) standard deviations in the background.

projections that are close to the global optimum.
The right-hand image of Figure 5.3 illustrates the mean L2(D) reconstruction

errors after each of the first ten (noisy) A and D-optimal projections over a sam-
ple of 1000 target absorptions drawn from the assumed prior. As in Figure 5.1 of
Test 1.1, these mean errors are compared with the averages and standard deviations
of the corresponding mean L2(D) reconstruction errors for 1000 (semi)randomly se-
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Fig. 5.5: Test 1.2. The first six sequentially D-optimal parallel beam projections
with the corresponding pixelwise (posterior) standard deviations in the background.

lected projection sequences. To be more precise, the angles of the projections in
these sequences are picked randomly from the uniform distribution over [−90, 90]◦,
but the lateral position of the parallel beam source-receiver pair is subsequently ad-
justed so that all projections cover the ROI in order to allow a fair comparison with
the optimized projections. The sequentially A-optimal projections clearly produce
the lowest mean L2(D) reconstruction errors, but this time around the random se-
lections slightly outperform the sequentially D-optimal projections in the considered
performance metric.

Test 1.3: Obstruction and effect of coarse discretization. Next we test
Algorithm 1 with an obstruction inside D and also examine the effect that a coarse
discretization has on the optimal angles. Only A-optimality is considered — the
results for D-optimality would be qualitatively the same in this case. The obstruction
blocking the X-rays is defined via Dobst = {x ∈ D | x1 < 0.5, 0.45 < x2 < 0.55},
with D \ Dobst being the ROI; see the left-hand image in Figure 5.6. The parallel
beam source-receiver pair has width 0.5, and the parameters defining the prior and
the additive measurement noise are also the same as in the previous test: σ = 0.02,
γ = 1 and ` = 0.05. We employ two different levels of discretization: moderately
dense, with N = 100 and m = 23, and very coarse, with N = 25 and m = 6.

Figure 5.7 presents the first six sequentially A-optimal projections for the denser
discretization, with the corresponding pixelwise (posterior) standard deviations shown
in the background. As expected, the algorithm tries to avoid imaging through the
obstruction and emphasizes to begin with reducing the uncertainty in the right half
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Fig. 5.6: Test 1.3. Left: Obstruction. Right: Mean L2(D) reconstruction errors
over a sample of 1000 absorption targets as functions of the number of (noisy) pro-
jections. The diamonds correspond to the A-optimal projections deduced using the
dense discretization and the squares to those deduced using the coarse discretiza-
tion. The reconstruction and corresponding errors were computed using the dense
discretization.
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Fig. 5.7: Test 1.3. The first six sequentially A-optimal parallel beam projections
for the dense discretization with the corresponding pixelwise (posterior) standard
deviations in the background.

of D, where imaging from almost all directions is possible. The projections produced
by Algorithm 1 for the coarser discretization, not illustrated here, are qualitatively
similar, but not exactly the same as the ones shown in Figure 5.7.

The right-hand image of Figure 5.6 depicts the mean L2(D) reconstruction errors
after each of the first ten (noisy) A-optimal projections over a sample of 1000 target
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Fig. 5.8: Test 2. Top left: True absorption and the obstruction Dobst. Rest of
the top row: The first two sequentially A-optimal projections and the resulting re-
constructions from noisy measurements. Bottom row: The next three sequentially
A-optimal projection after redefining the ROI to be the top right quadrant of D. The
resulting reconstructions from noisy measurements are shown in the background.

absorptions drawn from the assumed prior. Both sets of optimal projections, i.e. those
deduced using the dense discretization (n = 100 and m = 23) and the ones deduced
using the coarse discretization (n = 25 and m = 6), are considered. However, all
reconstructions and the corresponding L2(D) errors are computed using the dense
discretization. Based on the right-hand image of Figure 5.6, it seems quite obvious
that the level of discretization used for finding the sequentially A-optimal projections
does not play a major role in the performance of the overall approach — at least for
the studied parameter values and the simple geometry.

5.2. Test 2: Adaptive region of interest. Let us then study a setting where
the information on the location of the ROI is updated during the imaging process, that
is, we test Algorithm 2. We adopt the geometry in the left-hand image of Figure 5.6 as
well as the parameter values in (the denser discretization of) Test 1.3: γ = 1, ` = 0.05,
σ = 0.02, N = 100 and m = 23. The width of the parallel beam source-receiver pair
is 0.5, and D \Dobst is the ROI to begin with.

The top left image in Figure 5.8 shows the true absorption inside D: in the
top right corner, there is an inhomogeneity that is characterized by a higher level of
absorption compared to the rest of the domain. The other two images in the top
row of Figure 5.8 present the first two A-optimal projections and the corresponding
reconstructions, i.e. the posterior means, computed from simulated noisy measure-
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ments. Notice that these first projections are the same as the corresponding ones in
Figure 5.6. Since the second reconstruction hints there may be something interesting
going on in the top right quadrant of D, the ROI is redefined accordingly. The sub-
sequent three A-optimal projections are illustrated in the bottom row of Figure 5.8
together with the resulting reconstructions. Comparing these results with those in
Figure 5.6, it seems that the redefinition of the ROI had the desired effect as all of
the last three projections clearly provide information on the top right quadrant of D.

5.3. Test 3: Simultaneous estimation of the prior correlation length.
Our final numerical experiment applies Algorithm 3 to deducing the value of an un-
known correlation length ρ = ` in the prior covariance (5.1). The other free param-
eters are chosen to be γ = 1, σ = 0.05, N = 75 and m = 39. The parallel beam
source-receiver pair has width 1, i.e. its position cannot be adjusted laterally, there
are no obstructions inside D, and only A-optimality is considered. The presented nu-
merical results would be qualitatively similar if the unknown parameter in the prior
were instead the pointwise standard deviation or/and if D-optimality were used as
the criterion for choosing the projection angles.

The following simple test is repeated 1000 times: A random value for the true
correlation length ` is picked from the uniform distribution over [0.04, 0.06] and a
corresponding target absorption is subsequently drawn from the zero-mean Gaussian
density with the prior covariance (5.1). Then, Algorithm 3 is run with the conservative
initial guess `0 = 0.15 for the correlation length. The estimate for the correlation
length after the first projection, i.e. `1, is determined by performing ten steps of the
golden section line search over the interval [0.01, 0.2] and subsequently applying the
Newton’s method to fine-tune the location of the optimum. When determining `k for
k ≥ 2, mere Newton’s method is used with `k−1 as the initial guess. In all cases,
the Newton’s method is stopped when its step size is less than 10−4, and as a safety
measure, Newton steps with absolute value larger than 0.01 are scaled down to 0.01
(retaining the sign of the step). No obvious problems with the convergence of the
implemented minimization routine for finding `k were observed during computations.

The left-hand imaged in Figure 5.9 shows the mean signed errors in the estimate
for ` during the first ten iterations of Algorithm 3 over the aforementioned sample
of 1000 absorption targets. The corresponding standard deviations are visualized
as errorbars. The mean signed error is almost zero independently of the number of
(sequentially A-optimal) projections, whereas the standard deviation of the estimate
over the sample of absorption targets decreases from approximately 0.008 after the
first projection to about 0.002 after the tenth one. Altogether, the deduction of the
prior correlation length based on noisy projection data seems to function well.

Certain mean L2(D) errors in the reconstructions computed based on noisy paral-
lel beam projections of the studied sample of target absorptions are shown as functions
of the number of projections in the right-hand image of Figure 5.9. The reconstruc-
tions and the corresponding L2(D) errors are computed in two different ways: (i) by
accounting for the change in the estimate for the prior correlation length predicted
by Algorithm 3 after each new sequentially A-optimal projection and (ii) by sticking
with the conservative initial guess of 0.15 for the correlation length throughout the
optimization of the projection angles and in the computation of the corresponding
reconstructions. It is obvious that including the estimation of the correlation length
as a part of the reconstruction algorithm leads to superior reconstruction accuracy,
although this also makes the algorithm significantly more expensive computationally.
If the initial guess `0 for the prior correlation length were (significantly) more ac-
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Fig. 5.9: Test 3. Left: Average signed error in the estimate for the prior corre-
lation length over a sample of 1000 target absorptions as a function of the number
of sequentially A-optimal projection angles. The errorbars indicate the intervals of
two standard deviations computed over the studied sample. Right: Mean L2(D) re-
construction errors when the prior correlation length is simultaneously estimated by
Algorithm 3 (squares) and the corresponding mean L2(D) errors if the conservative
initial guess l0 = 0.15 is used both for optimizing the projection angles and for forming
the reconstructions (diamonds).

curate, it is debatable whether fine-tuning the estimate for ` would be worthwhile
computationally.

6. Concluding remarks. We have introduced a greedy, exhaustive optimiza-
tion algorithm that applies Bayesian OED to optimizing parallel beam projections in
X-ray imaging. Although the sequential algorithm does not guarantee global optimal-
ity for the set of projections it predicts, our numerical experiments demonstrate that
it usually exhibits satisfactory global behavior as well. More importantly, it fits to
the medical imaging paradigm where the patient is exposed to the minimal amount
of radiation without knowing a priori the necessary number of imaging angles. To
this end, we have discussed modifications of the algorithm that allow tuning the ROI
or some parameters in the (original) prior based on the measured data.

The main obstacle for adopting our algorithm in practical use is arguably its com-
putational complexity: as the optimization target typically has many local minima
(cf. Figure 5.2), we seek the optimal parameters via evaluating the target on a dense
enough grid in order to guarantee finding the global optimum for the next projec-
tion. In a three-dimensional setting, such a simple approach becomes prohibitively
expensive as the number of pixels in a single projection image can be in the order
of m = 105, and thus a more sophisticated adaptive optimization routine needs to
be developed for more realistic imaging geometries. On the positive side, the overall
performance of our approach does not seem to depend heavily on the level of dis-
cretization, which may permit a procedure where the next projection geometry is
optimized using a coarse discretization, but the actual reconstruction corresponds to
a much denser one.

In addition, only a very simple Gaussian prior for the absorption distribution
was employed in our numerical studies. The introduced algorithm should thus be
tested with more realistic priors and, even more importantly, its functionality should
be verified if no Gaussian prior is well aligned with the imaged target.

Appendix A. Target functionals for Bayesian experimental design. The
purpose of this appendix is to deduce the minimization targets (3.5) and (3.6) and
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to indicate how the latter is actually related to the information gain when a prior
is replaced by the posterior. It is also explained why Γpost should be replaced by
(Γpost)11 = ΓROI in (3.6) if one is only interested in the information gain over the
ROI, cf. (3.7).

A.1. D-optimality. The Kullback–Leibler divergence of the distribution of X
from that of X | y, i.e.,

DKL(X| y ‖X; p) =

∫
Rn

log

(
π(x | y; p)

πpr(x)

)
π(x | y; p) dx

=

∫
Rn

(
log(π(x | y; p))− log(πpr(x))

)
π(x | y; p) dx, (A.1)

has an interpretation as the increase in the level of information when the prior distri-
bution of X is replaced by the posterior induced by the data y. The aim of D-optimal
design is to maximize the expectation of DKL(X| y ‖X; p) over all measurements,
which means the precise form of the minimization target is

Φ̃D(p) = Ey
(
−DKL(X| y ‖X; p)

)
= −

∫
Rm

DKL(X| y ‖X; p)π(y; p) dy;

see (3.8) for comparison.
The expression

h(X | y) = −
∫
Rn

log(π(x | y ; p))π(x | y ; p) dx (A.2)

appearing in (A.1) is called the differential entropy of X | y. Since X | y is Gaussian,
h(X | y) allows an explicit representation [29]

h(X | y) =
n

2
+
n

2
log(2π) +

1

2
log
(
det(Γpost(p))

)
. (A.3)

On the other hand, the expected value of the second term on the right-hand side of
(A.1) satisfies

Ey
(∫

Rn

log(πpr(x))π(x | y; p) dx
)

=

∫
Rm

∫
Rn

log(πpr(x))π(x, y; p) dx dy

=

∫
Rn

∫
Rm

π(y |x; p) dy log(πpr(x))πpr(x) dx

=

∫
Rn

log(πpr(x))πpr(x) dx

=− n

2
− n

2
log(2π)− 1

2
log(det Γpr),

where the last expression is simply −h(X) for the Gaussian random variable X. In
particular, take note that this expression does not depend on the design variable p.

Because h(X | y) does not depend on y, we finally arrive at the simple expression

Φ̃D(p) = Ey
(
h(X | y)

)
− h(X) (A.4)

=
1

2

(
log
(
det Γpost(p)

)
− log(det Γpr)

)
,
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which explains why the minimizers of Φ̃D(p) and ΦD(y) in (3.8) are the same if ROI
is the whole D. Note that −Φ̃D(p) corresponds to the actual information gain that is
to be maximized.

Finally, observe that the above calculation can be repeated as such if πpr(x)
and π(x | y; p) are replaced by the corresponding marginal densities over the ROI.
Hence, the precise form of the minimization target when the information gain is to
be maximized over the ROI is obtained by replacing Γpost(p) by (Γpost(p))11 and Γpr

by (Γpr)11 in (A.4), cf. (3.8).

A.2. A-optimality. To begin with, let A ∈ Rl×n and observe that the CM
estimate x̂(p) = x̂(y; p) ∈ Rn, given in (3.3), naturally depends on the data y ∈
Rm. The expected squared distance of the unknown X from x̂(Y ; p) in the squared
seminorm induced by ATA over the joint distribution of X and Y reads as follows:

ΦA(p) =

∫
Rm

∫
Rn

(
x− x̂(y; p)

)T
ATA

(
x− x̂(y; p)

)
π(x, y; p) dx dy

=

∫
Rm

∫
Rn

tr
(
(x− x̂(y; p))TATA(x− x̂(y; p))

)
π(x | y; p) dxπ(y; p) dy

as the trace of a scalar is the scalar itself. Because the trace is linear and invariant
under cyclic permutations, we get

ΦA(p) = tr
(
A

∫
Rm

∫
Rn

(x− x̂(y; p))(x− x̂(y; p))T π(x | y; p) dxπ(y; p) dy AT
)

= tr
(
A

∫
Rm

Γpost(p)π(y; p) dy AT
)

= tr(AΓpost(p)A
T ),

where the last step follows from Γpost(p) being independent of y in our simple, Gaus-
sian and linear setting.
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