
1

Neural Network Kalman filtering for 3D object
tracking from linear array ultrasound data
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Andreas Hauptmann, Member, IEEE

Abstract— Many interventional surgical procedures rely
on medical imaging to visualise and track instruments.
Such imaging methods not only need to be real-time ca-
pable, but also provide accurate and robust positional in-
formation. In ultrasound applications, typically only two-
dimensional data from a linear array are available, and
as such obtaining accurate positional estimation in three
dimensions is non-trivial. In this work, we first train a neural
network, using realistic synthetic training data, to estimate
the out-of-plane offset of an object with the associated
axial aberration in the reconstructed ultrasound image. The
obtained estimate is then combined with a Kalman filtering
approach that utilises positioning estimates obtained in
previous time-frames to improve localisation robustness
and reduce the impact of measurement noise. The accuracy
of the proposed method is evaluated using simulations, and
its practical applicability is demonstrated on experimental
data obtained using a novel optical ultrasound imaging
setup. Accurate and robust positional information is pro-
vided in real-time. Axial and lateral coordinates for out-of-
plane objects are estimated with a mean error of 0.1mm for
simulated data and a mean error of 0.2mm for experimental
data. Three-dimensional localisation is most accurate for
elevational distances larger than 1mm, with a maximum
distance of 6mm considered for a 25mm aperture.

Index Terms— Kalman filtering, neural networks, object
tracking, out-of-plane artefacts, optical ultrasound

I. INTRODUCTION

Tracking and localisation of point-like objects is crucial
for a large variety of medical applications in ultrasound
(US) imaging, such as tracking of microbubbles for super-
resolution US imaging [1], [2] or US-guided placement of
fiducial markers for radiotherapy [3]. Additionally, tracking
of surgical tools (such as needles and catheters) is essential
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during minimally invasive procedures [4]–[6], as when placed
inaccurately, these devices may cause trauma by damaging
tissue or deliver ineffective treatment to the wrong location
[6], [7]. As such, US is frequently used for guidance through
imaging but accurate localisation in a three-dimensional target
domain remains challenging. This is primarily caused by the
nature of data acquisition using linear arrays, which assumes
that all signals originate from within the image plane and
thus only a two-dimensional B-mode image of the image
plane is formed. We refer to this obtained 2D image as the
US image and assume it consists of the reconstructed point,
or point-like, source corresponding to the object we aim to
track accurately. But, if this point source is located out-of-
plane it will primarily show as aberration in the reconstructed
image domain; additionally one may misinterpret features,
such as a needle shaft as the tip [8]. Thus, the problem to
provide an accurate positional estimate in 3D from only 2D US
images is consequently a notoriously difficult task without any
auxiliary information [9] and is a field of active research [10],
[11]. Early approaches used speckle information to estimate
out-of-plane displacements [12], [13]. Another possibility for
instrumented US tracking of needles was proposed by Xia et
al. [14], [15], who designed a custom-made imaging probe
consisting of a central array for conventional imaging and
two side arrays for 3D tracking [15]. Alternatively, one may
approach the needle tracking problem in full 3D to obtain
accurate positional estimates [16].

In this work, we propose an alternative, real-time capable,
method of performing 3D tracking without the need for
custom-made probes and using a single set of measurements
per time-step from a linear array. In the following we assume
a point source model for the tracked object. For the estimation
of lateral and axial positions, we examine high intensity
pixels in the reconstructed 2D US image, similar to [16],
where tracking was performed in full 3D. For the estimation
of the elevational direction, or out-of-plane distance of the
point source to the image plane, we use a machine learning
approach. In particular, significant markers are extracted from
the measured time series and a neural network is trained using
synthetic data modelled for a prototype optical ultrasound
(OpUS) imaging setup [17] to predict out-of-plane distance
and associated aberration in axial position in the reconstructed
2D US image. The markers used for the neural network are
summary statistics extracted from the measurement data and
correlated with the offset to establish a nonlinear mapping
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Fig. 1: Illustration of the measurement geometry. If the point source object is located out-of-plane (right side), then the object
appears distorted in the reconstructed US image, i.e. too low by δ in the axial direction. This is why the axial position needs
to be corrected.

between the two.

Additionally, we assume regularity in the temporal evo-
lution of the object location to improve robustness and re-
duce uncertainty in the estimation compared to independently
analysing subsequent images. The regularity assumption mim-
ics conditions encountered in clinical practice, where the
objects, such as needle tips and microbubbles, are expected
to follow a smooth trajectory without rapid jumps or jitter
during insertions into soft tissue. This can be incorporated,
while retaining computational efficiency, by a Kalman filter
[18], [19] which is a flexible method for estimating the state
(position, velocity, etc.) of a dynamic system. It has been
classically utilised in engineering applications such as target
tracking and navigation, but has been also extensively used
in inverse problems and medical imaging [15], [19]–[23]. The
underlying idea of Kalman filtering is to update the estimate of
the state at time step k+1 each time new data become available
as opposed to smoothing, where the whole trajectory from time
step 1 to k are updated as well. It has the appealing property,
as opposed to estimating the full posterior of all states, that the
problem does not become intractable as the number of data
points increases.

We note, that Kalman filtering has earlier been utilised for a
needle tracking problem in 3D [16] as well as for microbubble
tracking in 2D [24]. In [25], the authors track a wire tip using
Kalman filter and perform an elevational position estimation
from geometric markers. In this work we approach the problem
in 3D with only a single set of measurements (per time point)
from a linear array and combine it with a neural network in
order to obtain reliable estimates on the elevation to correct
the axial position in the 2D US image x̂. We evaluate the
proposed method by tracking a point-source for simulated
OpUS data and object trajectories with changing elevation.
Robustness is evaluated with respect to increased noise in
the measurement data and accuracy compared to positional
estimation using only the pixel with maximum intensity in the
OpUS image. Finally, we evaluate the method on experimental

OpUS measurements.

II. A KALMAN FILTER FOR OBJECT TRACKING AND
OUT-OF-PLANE CORRECTION

A. Image formation and object tracking
In the following we specifically consider a custom setup

and simulation framework for a freehand optical ultrasound
imaging system. That is, the US signal generation is modelled
as pulse-echo imaging, where each source along the linear
aperture emits a pressure wave, which reflects off the point
scatterer and is detected by a single fibre-optic detector placed
right next to the imaging aperture [17]. We note that the
tracking framework here can be generalised to any linear US
array, where every source element also acts as a detector.
Moreover, we consider in the following the tracking problem
in a 3D space, that is we aim to determine the 3D coordinate
x of the point-source. Given the recorded radiofrequency (RF)
time series p, reconstruction of the 2D in-plane US image x̂ is
performed using a basic delay-and-sum algorithm (equivalent
to dynamic focussing) [26].

When the location of the point-source is in-plane, then
the reconstructed image x̂ can be directly used to estimate
the location x reliably. On the other hand, if x is out-of-
plane then the 2D reconstruction will lead to a distorted
image, in the sense that the reconstructed axial position is
located deeper in the target than the correct position [27]. The
aberration occurs because the time of flight is larger from
objects that are positioned out-of-plane due to the imaging
geometry (see Fig. 1). Thus, this axial aberration needs to be
detected and processed to simultaneously provide an estimate
of the elevational distance between the point target and the
image plane, and the corresponding coordinates projected onto
the image plane.

B. Object tracking for in-plane objects
Most tracking applications primarily assume that the object

of interest is in-plane and features extracted from the recon-
structed image x̂ are good indicators of the actual position
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x. Thus, the majority of tracking algorithms are based on
intensity values in the B-mode images for point marker track-
ing [28], [29] in combination with various image registration
approaches [30]–[32]. More recent developments make use
of deep learning techniques to estimate the coordinates of
objects directly from the measured time series p [33]–[35].
Nevertheless, there is no clear gold-standard to perform object
tracking, as the particular approach depends heavily on the
application and practical need [9].

In this study we are concentrating on single object tracking
and use the maximum intensity (MI) estimate for comparison
and reference, since it provides highly efficient and accurate
estimates under ideal assumptions, i.e., high signal-to-noise
ratio without any elevation. Consequently, we will also design
our tracking model in the following by using the pixels in the
US image with highest intensity for the estimation of axial
and lateral positions in the filtering process.

C. Kalman filtering
Kalman filtering, a class of Bayesian filtering, is especially

effective in situations where the data stream is over time and
one must update the state given the new data and the history of
the system; as such it is ideally suited to robustly perform the
object tracking considered in this study. Specifically, Kalman
filtering [18] consists of closed-form update formulas for a
linear Gaussian filtering problem, which will be discussed
next. The estimation of axial and lateral coordinates is similar
to the approaches suggested by [16], [24], we will then
continue to extend our model to incorporate elevation and a
correction of estimated axial coordinates.

1) Lateral and axial coordinates: Estimation of lateral
and axial coordinates and corresponding velocities xk =
(xlk xak vlk vak)T at time step k is based on the locations of
highest absolute intensity pixels in the image. We assume that
these locations are spread around the location of the object.
While the velocity of the object is not the main interest, it is
introduced as an auxiliary variable to help in predicting the
motion, as will be described below. We denote by ylk ∈ Rn
the n lateral and by yak ∈ Rn the n axial highest intensity
locations and let yk = (yT

lk yT
ak)T. We then build a model

yk = Hxk + rk, (1)

where the matrix

H =



1 0 0 0
...

...
...

...

1 0
...

...

0 1
...

...
...

...
...

...
0 1 0 0


∈ R2n×4 (2)

associates given high intensity locations in yk with the actual
coordinates of the object in xk.

Furthermore, we assume that the noise in the observed
locations is normally distributed rk ∼ N (0,Rk), where

Rk =

(
s2lkIn×n 0

0 s2akIn×n

)
(3)

with s2lk being the sample variance of ylk and s2ak the sample
variance of yak. This way uncertainty is naturally incorporated
into the model as how spread out the high intensity locations
are.

We model the motion of the object with a constant velocity
model [36]

xk = Axk−1 + Gck, (4)

where ck ∼ N (0, diag(σ2
l , σ

2
a)) is assumed to be a random

acceleration component and σ2
l and σ2

a are lateral and axial
process noise variances, respectively. The matrices A and G
are defined as [19]

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , (5)

G =


1
2∆t2 0

0 1
2∆t2

∆t 0
0 ∆t

 , (6)

where ∆t is the time between subsequent observations.
The velocity and acceleration of the object at time step k−1

is used to give an accurate prediction of the position at time
step k. Writing Eq. (4) explicitly for the positional variables
only, we obtain

xlk = xl(k−1) + ∆tvl(k−1) +
1

2
∆t2clk,

xak = xa(k−1) + ∆tva(k−1) +
1

2
∆t2cak.

(7)

This means that we assume the position at time step k to be
close to the position at time step k − 1 plus the displacement
given by the time between subsequent observations, velocity,
and acceleration.

2) Out-of-plane offset and axial aberration: In case there is
an offset between the imaging plane and the object, we observe
aberration in the reconstructed axial coordinate due to the
geometry of the imaging problem (see Fig. 1). In this case,
location estimation based on only the high intensity pixels
would result in a biased estimate of the axial coordinate.
Instead, we use information in the measurement data p to
estimate the offset and axial aberration and use the knowledge
to correct the estimate of the axial coordinate. To do this,
we train a neural network with training data obtained from
an OpUS simulator. Details on the neural network will be
provided in following Section II-D.1 and on the simulator
in III-B. We note that instead of a neural network, other
sufficiently expressive nonlinear prediction models could be
used.

The filtering model is then extended to include the unfiltered
out-of-plane offset and axial aberration, denoted as yek and
yδk, that are received as output from the neural network.
We can then define y∗

k = (yT
k yek yδk)T. Filtered out-of-

plane offset and axial aberration and their velocities, denoted
as xek, δk, vek and vδk are included in the state vector
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Fig. 2: Flowchart for the Neural Network Kalman (NNK) filtered tracking. We extract mean value µ from the highest amplitude
entries in the measured time series p and use highest intensity pixels in the 2D US image. A previously trained (orange arrow)
neural network estimator then uses the last state estimates of lateral xlk and axial xak coordinates together with µ to estimate
offset and axial aberration. The next state is then updated via Kalman filtering to provide robust positional estimation.

x∗
k = (xT

k xek δk vek vδk)T, The extended model is

y∗
k = H∗x∗

k + r∗k,

x∗
k = A∗x∗

k−1 + G∗c∗k,
(8)

where r∗k ∼ N (0,R∗
k), c∗k ∼ N (0, diag(σ2

l , σ
2
a, σ

2
e , σ

2
δ )),

H∗ =

(
H 0

0 H̃

)
, (9)

with

H̃ =

(
1 0 0 0
0 1 0 0

)
, (10)

A∗ =

(
A 0
0 A

)
, (11)

G∗ =

(
G 0
0 G

)
, (12)

and σ2
e and σ2

δ are the process noise variances of the out-
of-plane offset and axial aberration components, respectively.
Finally, we let

R∗
k =

(
Rk 0

0 R̃k

)
(13)

where
R̃k = max(s2lk, s

2
ak)I2×2. (14)

3) State estimation: As stated earlier, a major benefit arising
from linearity and Gaussianity of the filtering models are the
closed-form update formulas for mean mk and covariance
P k of the state. At k = 0 we assume x∗

0 ∼ N (m0,P 0),
where m0 = 0 and P 0 = 15I to serve as an uninformative
prior. Note, that the mean mk corresponds to the estimated

coordinates for x∗
k and P k is the corresponding covariance

matrix. At every round, the prior predictions for mean and
covariance are updated recursively as

mpr
k = A∗mk−1,

P pr
k = A∗P k−1A

∗T + Q∗,
(15)

where Q∗ = G∗diag(σ2
l , σ

2
a, σ

2
e , σ

2
δ )G∗T. We then evaluate

the neural network as described in the following section to
provide the estimates of offset and axial aberration in y∗

k, then
the Kalman update can be performed by

uk = y∗
k −H∗mpr

k , (Prediction residual)

Sk = H∗P pr
k H∗T + R∗

k, (Measurement covariance update)

Kk = P pr
k H∗TS−1

k , (Gain update)
mk = mpr

k + Kkuk, (State update)

P k = P pr
k −KkSkK

T
k . (State covariance update)

(16)

Estimates of all coordinates are then given by mk. Their
variances can be found in the diagonal of P k and could be
used for uncertainty quantification of the Kalman updates.
The estimated axial aberration is then subtracted from the
estimated axial coordinate to yield an estimate for the actual
axial coordinate as

m∗
ak = mak −mδk. (17)

D. Application to object tracking
We apply the Kalman filtering method to the task of

object tracking modelled from OpUS image reconstructions
and measurement data. After generating suitable training data
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Fig. 3: RF time series (left) showing the decay in amplitude as the distance from imaging plane increases. The decay is also
shown on the right for different axial depths. In general, the rate of decay decreases with increased depth. The lateral coordinate
xl was set to 0 in these tests.

and training the neural network, tracking can be performed as
outlined in the following.

1) Neural network: training data and architecture: We use an
OpUS simulator [37], [38] to generate training data for the
neural network. First, we define a uniform 20× 20× 20 grid
of coordinates. The grid has bounds ±12 mm in lateral, 0.5 –
14.5 mm in axial and ±10 mm in elevational direction. Two
additional grid points were placed in-plane (zero in elevational
direction). In each grid point we simulate measurement data
with coordinate values equal to the grid point.

To obtain a marker for the offset estimation, we note that
ultrasound source elements typically emit near-omnidirectional
pressure fields within the image plane, but are usually designed
to emit highly directional fields in the out-of-plane direction.
This is achieved through a combination of eccentric element
geometries and acoustic lenses [27]. As a result, the amplitude
of pulse-echo signals from point objects depend strongly on
the elevational (out-of-plane) position, and generally reduces
with increasing elevational offset. The shape of the decay also
depends on the position of the object. In short, the out-of-
plane amplitude decay decreases as the axial depth increases,
as illustrated in Fig. 3. This is why both the lateral and axial
coordinates are used as inputs for the neural network. Thus, the
pulse-echo signal strength across the aperture can be used as an
effective marker of the elevational position. To exploit this, we
use the RF time series p to compute the mean absolute value
µ of those time series samples belonging to either highest or
lowest 1% of a Gaussian defined by the mean and variance
of p. This way most of the purely noisy part of the data is
ignored. We also compute the distance between the mean of
apparent (reconstructed) axial coordinates of n = 15 highest
intensity pixels and the real axial coordinate used to simulate
the data. This distance reflects the axial aberration that needs
to be corrected for.

A neural network Λθ with parameters θ is then trained to
map lateral and axial coordinates, and mean absolute value

of high amplitude entries in measured time series, denoted as
u = (xa xl µ)T, to a prediction of unfiltered out-of-plane
offset and axial aberration w = (ye yδ)

T. Since the simulator
output is almost symmetric with positive and negative offsets,
we train the network with absolute offset values ≥ 0. This
means that we can only estimate magnitude of the offset, not
the direction. The network chosen is a standard multilayer
perceptron [39] with two hidden layers and 20 nodes in each
layer. Each hidden layer has a sigmoid activation function
whereas for the output layer the activation function is linear.
The network is trained by finding a set of parameters θ∗ such
that mean squared error between neural network output and
the ground truth is minimised, i.e.,

θ∗ = argmin
θ

M∑
i=1

‖Λθ(ui)−wi‖22, (18)

where M is the size and i is an index over the training data. We
used the Levenberg-Marquardt algorithm levenberg, marquardt
to train the neural network. The dampening parameter was set
to the default value of 10−3. The optimisation stopped when
the validation performance did not improve in six epochs in
a row or the relative norm of the gradient of the minimised
function was smaller than 10−7.

2) Tracking: We track the point-source from a sequence
of optical ultrasound image reconstructions. At k = 1, we
set m1 = 0 and P 1 = 15I . We find the coordinates of
n = 15 highest intensity pixels and use the neural network to
estimate the unfiltered out-of-plane offset and axial aberration.
Since the neural network input contains the lateral and axial
position of the point-source, we use the estimate from the
previous time step. If the motion of the object is somewhat
regular, this does not have a big impact on the estimation
accuracy. The coordinate estimates are then updated with
Kalman filter update formulas Eq. (16). An estimate of the true
axial coordinate of the object is then obtained by subtracting
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the axial aberration estimate from the apparent axial coordinate
obtained directly from the 2D US image. An illustration of the
full tracking workflow is shown in Figure 2 and summarised
as pseudo code in Algorithm 1.

Algorithm 1 NNK: Neural Network Kalman filtered tracking

1: Initialisations: m0 = 0, P 0 = 15I
2: function NNK(Inputs: process noise variances σ2

l , σ2
a, σ2

e

and σ2
δ )

3: k ← 1
4: while new data acquired do
5: Update mean mpr

k and covariance P pr
k by Eq. (15)

6: Compute marker µk and high intensity pixel loca-
tions ylk and yak

7: u ← (ml(k−1),m
∗
a(k−1), µk)

8: (yek, yδk) ← Λθ(u)
9: Perform Kalman update with (16)

10: Perform axial aberration correction with (17)
11: Display image overlaid with coordinate estimates
12: k ← k + 1
13: end while
14: end function

III. OPTICAL ULTRASOUND AND EXPERIMENTS

A. Experimental setup

Experimental validation of the method was performed using
a custom OpUS imaging system comprising a handheld imag-
ing probe. We have chosen the OpUS imaging system for this
study due to three main advantages: it offers direct access
to the RF data, it was previously accurately characterised in-
house, and the system can be accurately and highly efficiently
modelled numerically – thus making it an ideal fit for this
study. This system, which was described in full in [17], uses
scanning optics to couple excitation light sequentially into
the proximal ends of 64 optical fibres arranged in a linear
array. This light is delivered to an optically absorbing coating
deposited at the distal ends, where it is converted into divergent
ultrasound waves via the photoacoustic effect [40]. Thus, an
OpUS source aperture is rapidly scanned to enable video-
rate and real-time imaging in a 2D imaging plane. Back-
scattered ultrasound waves are detected using a single fibre-
optic ultrasound detector comprising an optically resonant
plano-concave Fabry-Pérot cavity [41], with lateral extent of
25mm.

B. Simulated data

A highly efficient and accurate simulator of the OpUS
imaging setup, as previously described in [37], [38] and based
on the FOCUS ultrasound simulator [42], [43], was used to
evaluate the performance of our method with synthetic data
examples produced with the OpUS simulator. In total, four
synthetic data sets were generated to test different properties of
the tracking method. Noise amplitude was computed such that
SNR for in-plane locations was 6.5 dB and decreasing SNR
with elevational distance, due to decreasing signal strength.

The first data set (Exp.1) comprises 101 time points and
a smooth, curved object trajectory with linear motion at
constant velocity in the elevational direction to test the overall
performance, see Figure 4. We remind that our proposed
method extends the MI estimation with Kalman filtering
and incorporation of elevational offset estimation and axial
aberration correction. Thus, Exp. 1 shows the importance of
the aberration correction. We then examine other factors, such
as noise in the second data set (Exp. 2), which is the same as
the first one, but with tenfold noise in every tenth measured
time series to investigate the robustness of the method. The
third data set (Exp. 3) follows also the same axial-lateral
trajectory as Exp. 1, but the object is positioned in-plane for
all frames. The fourth data set (Exp. 4) has stationary lateral
and axial coordinates with a constant change in elevation, and
is meant to test the accuracy of offset estimation.

1) Reference methods for comparison: In addition to the
proposed combination of neural network tracking with Kalman
filtering (NNK), we test two other reduced models: plain Gaus-
sian random walk (NNK-RW) and independent subsequent
states (NNK-I). Mathematically they differ with respect to the
dynamic model: NNK-RW assumes that xk = xk−1 + ck and
NNK-I that xk = ck (compare to Eq. (4)). We compared our
method to MI tracking which estimates the object location
as the pixel with highest intensity and thus only outputs a
2D location. To evaluate the performance of all considered
methods, we computed the mean 2D Euclidean distance from
the estimated axial and lateral coordinates to the ground truth
using synthetic data. We additionally evaluate accuracy of the
three-dimensional positional estimate with Exp. 4. Finally, we
examined the localisation accuracy of NNK as a function of
depth (axial coordinate) and out-of-plane offset with an axial
line trajectory simulated with different values for out-of-plane
offsets. This evaluation was done using 3D Euclidean distance.

C. Experimental data

To test the out-of-plane tracking abilities of the method we
performed one physical experiment closely matching simu-
lated Exp. 4 and one to test accuracy when moving further
out-of-plane. In the first experiment, the tip of a metal pushpin
(tip diameter: 50 µm) was used to emulate a point object
and was submerged in water as a homogeneous background
medium. This pin was placed centrally within the imaging
aperture at an axial distance of 7.5 mm, and was attached
to a manual translation stage (PT1/M, Thorlabs, Germany)
to allow for controlled motion orthogonal to the image plane
(i.e., “out-of-plane”) and provide ground-truth positions for
quantitative evaluation. The tip of this pin was placed at out-
of-plane positions ranging between -3 mm to +5 mm at a
regular step size of 100 µm, and at each position a 2D OpUS
image was acquired. For the second physical experiment, the
out-of-plane and lateral positions were varied simultaneously
to mimic a non-orthogonal drift of the object. The object was
initially located centrally in the image at an axial depth of 7.5
mm, and moved in increments of 100 µm (lateral) and 200 µm
(out-of-plane) to a total out-of-plane position of 10 mm. SNR
for the experimental data is estimated to be around 4 dB.
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Fig. 4: Tracking for synthetic experiment 2 with maximum intensity (MI) and NNK. The axial coordinate is overestimated
with MI due to the absence of axial aberration correction and the location is severely misestimated in some frames because
of increased noise.

D. Tuning parameter selection

The tracking algorithm requires the selection of four process
noise variance parameters that can be used to fine-tune the
process. Values that are too low (< (10−4 mm)2) may cause
the estimated trajectory to be too restricted in case of rapid
changes in the position or velocity of the object. With ideal
data (high SNR), values that are too high have little effect,
but with noisier data robustness suffers. This transition starts
to take place at around the value of (0.2 mm)2. Thus, the
parameters were chosen empirically as (0.005 mm)2 to allow
enough flexibility to recover from sudden changes in the
position and velocity but at the same time provide robustness
against noise.

Fig. 5: 3D localisation error (mm) of NNK as a function
of elevational position and axial depth, for lateral position at
0 mm.

IV. RESULTS

A. Results on simulated data

Table I shows the errors for the four tracking experiments
and different varying methods. The proposed NNK methods
perform clearly better than MI with data where the tracked
object is out-of-plane, due to the correction of the axial aber-
ration caused by out-of-plane offset: the localisation error for
all NNK methods is 0.13 mm, while for MI it is fivefold. For
occasionally noisier data filtering-based NNK and NNK-RW
retain their performance and clearly outperform NNK-I and MI
that do not assume dependence between subsequent positions,
this indicates that a filtering approach is necessary to provide
robustness. This benefit of filtering and axial aberration cor-
rection is clearly visible in Fig. 4, where MI overestimates the
axial coordinate and for some noisy images the estimate jumps
off the trajectory (green spikes). Nevertheless, if we consider
no out-of-plane offset without additional noise, all methods
perform comparably well with localisation error around 0.11
mm. In terms of worst-case performance, NNK performs the
best with maximum error less than three times the mean error
in every experiment. In experiment 2 with increased noise,
this ratio increases to almost five with NNK-RW and to over
10 with NNK-I and MI. Videos of tracking results with NNK
for experiments 1 and 4 are presented in the supplementary
material (Supplementary Videos 1 and 2).

Fig. 5 shows how the 3D error depends on depth and
out-of-plane offset for lateral position at 0 mm. Interestingly
the error is largest (∼1.6 mm) when offset is small and
depth is large. For bigger offsets the error gets smaller. This
indicates that there are no strong enough markers in the data
to reliably estimate all three coordinates when the out-of-
plane offset is small. However, the reliability increases with
higher out-of-plane offsets. The relatively poor performance
at shallow depths and large elevational offset (bottom right of
Fig. 5) is caused by the directivity of the ultrasound sources
and a large propagation distance, which result in poor SNR
and hence poor amplitude estimates. The same pattern was
obtained for different lateral positions (data not shown), with
minor fluctuations in the stable region and degradation for
the extreme points close to the imaging boundaries. We also
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Test data NNK NNK-RW NNK-I MI (reference)
Exp. 1: Regular 0.12 (0.076) [0.34] 0.12 (0.078) [0.37] 0.13 (0.078) [0.38] 0.62 (0.36) [1.17]
Exp. 2: Increased noise 0.13 (0.080) [0.42] 0.15 (0.12) [0.78] 0.51 (1.77) [13.09] 1.06 (2.19) [16.51]
Exp. 3: No offset 0.11 (0.053) [0.26] 0.11 (0.052) [0.26] 0.11 (0.052) [0.26] 0.10 (0.058) [0.28]
Exp. 4: Stationary axial & lateral 0.096 (0.040) [0.19] 0.094 (0.035) [0.18] 0.098 (0.039) [0.20] 0.33 (0.34) [1.30]

TABLE I: 2D errors (axial/lateral) as mean distance (standard deviation) [maximum distance] in millimetres with respect to
ground truth of different tracking schemes for the synthetic data experiments: proposed method (NNK), the two reduced models
using Gaussian random walk (NNK-RW) and independent subsequent states (NNK-I), and the reference method maximum
intensity (MI).

Fig. 6: Tracking for synthetic experiment 4. (Top left) tracked location (green dot) at time step 40 (out-of-plane distance ∼1
mm), (top right) tracked location at the last time step (out-of-plane distance 5 mm), (bottom left) 2D and 3D error (Euclidean
distance) from the ground truth and (bottom right) out-of-plane offset (elevational distance) and axial aberration over time.

note, that even though the out-of-plane offset estimation is
not correct for all instances, the estimated axial aberration
and filtering approach still provides accurate results, as can
be seen in Fig. 6: lateral/axial trajectory is very close to the
ground truth.

B. Results on experimental data

Before we could apply NNK for tracking, the experimental
data required normalisation to match the amplitude (in arbi-
trary units) of synthetic data. While the experimental data is
clearly noisier than synthetic data, the tracking method per-
forms reasonably well. The axial aberration correction works
and out-of-plane offset largely follows the expected trajectory
(see Fig. 7 and Fig. 8). However, when going farther than 6
mm away from the imaging plane in the second experiment,
the algorithm breaks down and the localisation error increases
rapidly. The axial/lateral localisation error is mostly below 0.3

mm and with mean around 0.2 mm for the first experimental
dataset. For the second dataset the same holds for frames
1 to 35, after which the error starts to increase. In the first
experimental dataset most of the 3D error originates from the
elevational component. This effect is not as pronounced in the
second dataset. We note that in the first dataset the estimation
accuracy is worse for the first part with negative elevational
distance. This indicates that the imaging probe suffers from
a source of asymmetry (e.g., acoustic shadowing by an edge,
or unexpected source or receiver directivity) that has not been
accurately accounted for in the numerical model. This effect
can also be observed in the video of this tracking experiment
in the supplementary data (Supplementary Video 3).

C. Computation times

Performing one iteration of tracking took on average 298
ms. The time was split as follows: Reconstructing the image
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Fig. 7: Tracking for experimental dataset 1 matched to synthetic experiment 4. (Top left) tracked location (green dot) at time
step 40 (out-of-plane distance ∼1 mm), (top right) tracked location at the last time step (out-of-plane distance 5 mm), (bottom
left) 2D and 3D error (Euclidean distance) from the ground truth and (bottom right) out-of-plane offset (elevational distance)
and axial image aberration over time.

(269 ms), finding high intensity pixels (21 ms), neural network
prediction (6.6 ms), Kalman filtering (0.43 ms), and displaying
the image (83 ms). Hence reconstructing the image is clearly
the most time consuming task and the NNK framework only
adds a small computational overhead.

Preliminary tasks include generating training data and train-
ing the neural network. Training data with 8800 rows was
generated in about an hour. Training the neural network took
on average only 20 seconds with a median of 17 seconds
(over 10 training attempts). Generating the training data and
training the neural network has to be done only once which
means that tracking is essentially performed in real-time.
Computations were performed on a workstation with AMD
Ryzen Threadripper 2950X processor and 32 GB RAM. The
codes for NNK are written in MATLAB while the OpUS
simulator uses routines compiled from C++ for CPU.

V. DISCUSSION

A. Discussion of markers

Our experiments show that magnitude of the simulated
measurement data coupled with axial and lateral position is
correlated with the out-of-plane offset and an axial positional
aberration, as illustrated in Fig. 3. This correlation can be ex-
ploited with machine learning to find a nonlinear relationship
between these quantities. We also found that this correlation

holds with experimental data after data normalisation. Nev-
ertheless, the tracking with experimental data is less stable
and shows reduced accuracy. This can be partly attributed to
reduced SNR in the measurement data as well as deviations
from the ideal assumptions in the simulation, but the Kalman
filtering offers a framework to partly mitigate these negative
effects and is still able to provide a stable estimation of the
axial/lateral coordinate.

In this work we have used an OpUS simulator and computed
all markers, offset and axial aberration, from the simulated
data. We note that under the assumption of a homogenous
medium, we can alternatively calculate the axial aberration
analytically using the point-spread function of the imaging
system. Nevertheless, we have observed in conducted ex-
periments that an analytic calculation can help for small
distances in the simulated data, but will lead to decreased
accuracy for the experimental datasets. Thus, computing the
axial aberration from the reconstructed US images for training
seems to provide more generalisable markers for the estimation
process. Furthermore, this fully simulated framework can be
extended to heterogeneous media.

B. Offset accuracy and range

The quantitative analysis shows that tracking accuracy is
worse for small offsets and larger depths. Most of this error
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Fig. 8: Tracking for experimental dataset 2. (Top left) tracked location (green dot) at time step 1 (out-of-plane distance 0 mm),
(top middle) tracked location at time step 20 (out-of-plane distance ∼4 mm), (top right) tracked location at the last time step
(out-of-plane distance 10 mm), (bottom left) 2D and 3D error (Euclidean distance) from the ground truth and (bottom right)
out-of-plane offset (elevational distance) and axial image aberration over time.

seems to be caused by the out-of-plane offset estimation, while
axial and lateral components are tracked well. This indicates
that even though the offset might be incorrectly estimated, the
proposed axial aberration correction still works. We attribute
the difficulty of estimating small elevations to the shallow
slope of the out-of-plane amplitude decay for larger axial
depths, as shown in Figure 3. This decrease in accuracy is
also seen in the error matrix in Figure 5, and worsens with
increasing axial distance. Thus, it is important to provide both
offset and axial aberration, to provide accurate tracking results
within the Kalman filtering. For the simulated data this effect
shows symmetrically at roughly out-of-plane distance under
1 mm. For the experimental data the threshold distance is
similar, but an asymmetric behaviour can be observed, where
positive elevational distance is underestimated and negative
overestimated, as seen in Fig. 7. This indicates that the purely
simulated framework can in principle be transferred to the
experimental case, but small asymmetries in the imaging probe
would need to be investigated and accounted for to further
improve the results.

The imaging system in this work uses unfocussed, weakly
directional circular optical ultrasound sources that insonify a
wide elevational range. Consequently, out-of-plane tracking
can be performed over a large elevational range limited by
the SNR of the B-scan; in this work up to 6 mm for positive
elevational distance. For larger out-of-plane offsets, the RF

data SNR is insufficient to reliably detect the pulse-echo
signal. However, for imaging probes comprising directional
sources, or in the presence of an acoustic lens, this range could
be different.

C. Limitations and clinical applicability

In this study we show that one can successfully use
the correlation between out-of-plane amplitude decay and
axial/lateral positions to estimate 3D locations from linear
array data. Nevertheless, this correlation was observed in
a simplified simulated and experimental setting assuming
homogeneous media, i.e., a water bath in the experimental
setup. In order to move towards clinically realistic scenarios
we need to consider various deviations from the ideal case.
In the following we discuss limitations and extensions needed
for clinical applicability.

1) Speckle: The tracking presented is based on maximum
intensity pixels, as such speckle of low to moderate intensity
(compared to the intensity of the image of the object; for
instance in the case of a highly echogenic needle tip) is not
expected to interfere with the estimation procedure. However,
strong speckle could result in tracking errors if only the am-
plitude is used as marker µ. In this case, the NN would likely
need to be adapted to not only extract amplitude information,
but also its variation across the imaging aperture – as this
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spatial variation for the actual object would differ from that
of speckle signal.

2) Inhomogeneous media: In this work, we have presented
results for homogeneous media. For an application to in-
homogeneous media with spatially varying speed of sound
the NN needs to be trained differently. Here approximate
synthetic training data could, for instance, be generated using
ensemble-mean speed of sound maps observed over a group
of patients, and simulated with advanced methods such as the
k-Wave toolbox [44]. In addition, acoustical attenuation would
affect the extracted parameter µ and hence complicate accurate
out-of-plane tracking. For applications to actual tissue, this
attenuation should be included in the model used to train the
NN.

3) Object geometry: The results presented in this work were
obtained for point-like objects, such as clinically encountered
in the form of microbubbles, fiducial markers, brachytherapy
seeds and radio-opaque markers on surgical instruments. In
order to extend the method to finite-sized objects, their ultra-
sound response needs to be accurately modelled. Conceptually,
the method applies to finite-sized spherically symmetric ob-
jects, such as large needle tips or spherical implants. However,
more complicated object geometries, such as long needles or
asymmetric beads, are complicated due to nonlinearities aris-
ing from high echogenicity, and ambiguities in differentiating
between needle tips and shafts or different object orientations.
Such objects would require further refinement in the NN
markers and the underlying acoustical model to make accurate
predictions.

4) Tracking range and accuracy: In the experimental results
presented here, an out-of-plane tracking range of up to ±6
mm was demonstrated, and was limited by SNR. This range
could be further extended, provided the imaging probe emits a
sufficiently diverging field in the elevational direction and SNR
is improved, for instance using coded excitation schemes. The
optical ultrasound imaging system considered here does not
apply acoustic focussing in the elevational direction, and hence
is ideally suited to tracking across a wide out-of-plane range.
The achieved range of ±6 mm is clinically highly relevant, as
correcting object placement over larger distances is typically
not possible without removal and re-entry of a surgical tool.
For clinical imaging systems, which typically apply elevational
focussing, geometrical distortion and signal amplitude decay
resulting from out-of-plane offsets will still occur, and the
proposed method can still be applied, provided it is retrained.
However, the out-of-plane tracking range and accuracy will
depend on the tightness of the elevational focusing, and hence
will vary with both the F-number of the elevational focusing
lens and the axial position of the object relative to the focal
distance.

5) Experimental setup: Here, we used a prototype optical
ultrasound imaging setup to perform experimental validation
measurements. While these were reasonably successful (cf.
Figs. 7, 8) due to the availability of a highly accurate and
efficient numerical model, the developmental nature of this
system limited its practicality. Slow fluctuations were observed
in the efficiency of the optical ultrasound sources and the sensi-
tivity of the detector, which resulted in unforeseen variations in

the ultrasound amplitudes. As the NN estimation requires the
amplitude to be accurately known, these fluctuations limited
the range of object trajectories to those that could be tra-
versed quickly. This also resulted in slight differences between
simulated and experimental data. Nevertheless, the estimation
network generalised well to the experimental data, and the
filtering approach further stabilised the estimation process.
However, in principle any ultrasound imaging system that
grants access to RF data could be used, even those generating
focused transmissions – although the NN would need to be re-
trained for each considered setup and tracking accuracy and
range will vary.

D. Extensions
The presented framework can be extended to tracking mul-

tiple point sources. In that case, a data association task would
have to be solved [19], [45]. This means determining which
pixels belong to which target. Furthermore, this would also
require a more complicated setup for training data generation
and extraction of markers from the measured time series.

Another interesting avenue to pursue would be the extension
to needle tracking (as opposed to point object tracking) where
the shaft can be mistaken for the tip, which would require a
shape detection instead of a simple tracking. Alternatively, one
can overcome the shaft problem by adjusting our framework to
data obtained with an active listening needle [8] that relies on
the reception of ultrasound pulses by a fibre-optic hydrophone
(FOH) integrated into the needle.

Finally, due to the limitations mentioned in Section V-C
it might be promising to consider the full RF time series as
input to a convolutional neural network that is also capable of
extracting geometric markers from the data. This information
can be still paired with manually extracted markers, such as
amplitude, to improve the tracking accuracy and robustness
for future applications.

VI. CONCLUSION

This work proposes a neural network and Kalman filtering
approach to perform accurate and robust object tracking in
3D from linear array data. The essential step is that a neural
network estimates the third dimension and its impact on the 2D
US image, in form of aberration in the axial coordinate. Then
Kalman filtering is performed for all coordinates to provide
a robust estimate with respect to noise. We have shown that
the framework can provide high accuracy in estimating axial
and lateral coordinates for objects that are not in-plane as
well as the corresponding elevational distance. If the point-
source is too close to the imaging plane, it remains difficult
to provide an accurate estimate on the elevational distance,
but the proposed NNK framework is still capable to provide
a robust and accurate estimate on the lateral/axial coordinate.
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