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Abstract

The field of structural engineering is vast, spanning areas from the design of new
infrastructure to the assessment of existing infrastructure. From the onset, traditional
entry-level university courses teach students to analyse structural response given data
including external forces, geometry, member sizes, restraint, etc. – characterising a
forward problem (structural causalities → structural response). Shortly thereafter,
junior engineers are introduced to structural design where they aim to, for example,
select an appropriate structural form for members based on design criteria, which is
the inverse of what they previously learned. Similar inverse realisations also hold
true in structural health monitoring and a number of structural engineering sub-fields
(response → structural causalities). In this light, we aim to demonstrate that many
structural engineering sub-fields may be fundamentally or partially viewed as inverse
problems and thus benefit via the rich and established methodologies from the inverse
problems community. To this end, we conclude that the future of inverse problems
in structural engineering is inexorably linked to engineering education and machine
learning developments.
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1 Introduction

The estimation of structural response from loading and boundary conditions is a fun-
damental concept in structural analysis, from elementary Euler-Bernoulli beam theory
to non-linear simulations involving complex structures subjected to extreme earthquake
excitation. In fact, numerical computation of structural response from known causali-
ties characterises a forward problem (cause → effect) and has rightly been the source of
significant research since the advent of modern computing. Amongst the myriad of com-
putational frameworks, the finite element method (FEM) [1, 2, 3, 4], finite difference [5, 6],
spectral element [7, 8], and hybridisations [9] have proven both widely applicable and suc-
cessful over the years. The implementation of such forward models have aided engineers
in their ability to model, analyse, and design structures with arbitrary geometry and pre-
cision, contributing greatly to the presence of skyscrapers, supersonic aircraft, large cruise
ships, and many more engineering examples. In the near future, the pervasiveness of, for
example, the FEM appears inevitable while its usefulness is unquestionable in structural
engineering applications.

Pragmatically however, the final configuration of structural members is not known at
the beginning of the design process; i.e. one iteration of a structural simulation is not
generally sufficient in a real project. This reality implies that the design of structures is
an iterative process – for example the identification of appropriately sized structural mem-
bers, connections, and restraints (causalities) from design constraints, building codes, and
environmental considerations (data). As is often the case, the iterative design process is
carried out initially using design tables, rules of thumb, handcrafted protocols, optimi-
sation regimes, etc. Nonetheless, this process is emphatically an inverse problem, where
an engineer is given data alongside design objectives and challenged to determine the
appropriate structural configuration (causalities).

Of course, the field of structural engineering is diverse, in which structural design is one
of many sub-fields where inverse problems are applicable. Perhaps a more straightforward
implementation of inverse problems is structural health monitoring (SHM), where real-
time (or near real-time) data is used in the prognosis of structural condition. Indeed, the
detection, localisation, prediction, and prognosis of potential damage processes is enabled
in one of two ways, (a) via pattern recognition or (b) solving an inverse problem (or
series of inverse problems) [10]. Moreover, certain non-destructive evaluation (NDE) are
also known to employ inverse problems (e.g. X-ray CT and emerging NDE approaches
in academia) to asses the damage state of structural elements measured offline [11]. For
contextualisation, a schematic example contrasting the differences between forward and
inverse models is provided in Fig. 1; this well known problem is referred to as an inverse
elasticity problem, falling within the realm of NDE inverse problems.

These, and many more sub-fields of structural engineering, can not only be (funda-
mentally or partially) viewed as inverse problems, but, as we aim to illustrate herein,
are benefited by the systematic approaches comprising the rich area of inverse problems.
Too often overlooked by structural engineers and structural researchers, the mathemat-
ics of inverse problems is an established field, ranging from classical statistical/Bayesian
methodology [12] to cutting-edge implementation of deep neural networks [13]. Moreover,
while the present use of inverse problem methodologies in structural engineering is limited,
its potential is immense across the expanse of the structural engineering sub-fields.

In this paper, this potential will be discussed in detail and contextualised among a
broad suite of existing inversion-based applications. To begin, a clear description of in-
verse problems and methods will be detailed. Following this, a review and discussion
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Figure 1: Schematic illustration depicting the forward and inverse problem relationship for
a stretched elastic plate with randomised stiffness properties. The forward finite element
model inputs (causalities) are shown as the non-homogeneous stiffness properties while the
model output is the displacement field. In contrast, the inverse model aims to estimate
the stiffness properties given the displacement field.

of inverse methodologies in modern structural engineering applications will be provided.
Inasmuch, the intent of this manuscript is to examine the following topics in structural
engineering through the lens of inverse problems. We remark, however, that the forth-
coming topical sections are not intended to be exhaustive reviews, but rather, to provide
substantiating evidence for the pervasiveness of inverse problems in structural engineering.
Lastly, realisations, overview, paths forward, and conclusions will be presented.

2 Inverse problems, methods, and contemporary use

Traditionally, the field of inverse problems is concerned with the mathematical question of
if and how one can determine the cause for certain measurements. Despite being primarily
mathematically oriented, the underlying questions always stem from relevant physics and
engineering applications. This is especially true for one of the most prototypical inverse
problems, the so-called Calderón problem [14] that asks: can one determine the conduc-
tivity of a body from electrical measurements at the boundary. In fact, this question
arose during Calderón’s time as a civil engineer, before he pursued an academic career
in mathematics. In the following, we want to close the loop back to civil and structural
engineering application that once motivated an entire field of mathematical studies, by
utilising the insights gained in the last decades.

More generally speaking, inverse problems consist of finding the unknown characteris-
tics of a structural system from some of the outputs, or measurements of that system. Most
notably, this includes the above mentioned inverse conductivity problem in geophysics [15]
and engineering, but also includes a large field with applications in medical image recon-
struction [16, 17]. Mathematically, such problems are ill-posed, broadly meaning that the
parameters to be estimated θ are highly sensitive to changes in the measurement data d.
The solution to the inverse problem involves estimating the parameter θ from a fixed set
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of measured data d, in contrast to the forward problem of computing d from knowledge of
the system parameter θ. Specifically, this means given the forward model U , that models
the system equations, we first formulate the underlying observation model

d = U(θ) + δd. (1)

Here, δd denotes an error term, modelling several sources of possible errors, such as in-
accurate measurements or even inaccuracies in the model simulation. The question that
remains is: ”how can we obtain θ from d given the above relationship?” Which we will
call the reconstruction problem in the following. It is important to note that we can not
simply invert the forward problem (1), as the ill-posed nature implies that there can be
either no or multiple solutions and additionally under inevitable measurement noise these
solutions are not stable to compute by direct inversion. This ill-posedness of the inversion
procedure constitutes the underlying paradigm of an inverse problem.

In order to obtain stable reconstructions, we make use of a concept known as regu-
larisation [18], which aims to assign a unique solution to each set of measurements in a
stable manner, that means if the noise in the measurement vanishes, we would obtain the
original system parameter. We can separate such stable reconstruction procedures into
two primary classes: ones that compute a solution θ∗ directly from measured data and
those that iteratively aim to fit a solution by minimising a suitable cost functional. In the
first case we aim to formulate an inverse mapping U †, such that

U †(d) ≈ θ. (2)

The primary problem in obtaining such direct inversion algorithms is that they can be
highly dependent on the problem under consideration. Especially so, when the relationship
between d and θ is non-linear. Thus, obtaining such a mapping is a highly non-trivial task,
but reveals much about the underlying problem characteristics and hence is a primary
interest of mathematical research [16, 19, 20].

The second case, is a more principled approach that can be formulated for a large class
of problems. The underlying premise is to reformulate the reconstruction problem as an
optimisation problem. That is, we formulate a cost functional that measures how good our
reconstruction fits the data while simultaneously enforcing some additional characteristics
and acting as regularisation for the reconstruction process. Specifically, the reconstruction
problem then writes as finding a minimiser of

θ∗ = arg min
θ

1

2
‖U(θ)− d‖22 + αR(θ). (3)

Here, the first term enforces that reconstructions fit the data, whereas the second term
is the so-called regularisation term. As discussed previously, this regularisation term
is necessary when dealing with inverse problems, as it prevents a solution from over-
fitting the measurement noise. Importantly, by incorporating prior knowledge in the
design of R [21, 22], we effectively choose preferred solutions and overcome the problem
of non-uniqueness. Finally, the parameter α > 0 balances both terms and depends on
the noise amplitude. Solutions to (3) are computed by suitable optimisation schemes,
for which repeated evaluation of the forward model U will be necessary. Consequently,
computing solutions to (3) can be computationally highly expensive, if the evaluation of
U is expensive. Thus, for nonlinear problems fast converging algorithms, such as Gauss-
Newton or related methods [23], are preferred.

Lastly, with the recent rising popularity of data-driven methods, researchers have de-
signed computationally more efficient ways to address the reconstruction problem [24].
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Such data-driven approaches are often inspired by classical reconstruction algorithms dis-
cussed above. For instance, one can replace the direct reconstruction operator or parts
of it, with a data-driven component, typically consisting of a neural network [25, 26, 27].
Given a set of informative reference data, one can then learn a suitable mapping mimicking
(2). Alternatively, researchers have investigated the possibility to improve the iterative
process to compute solutions to (3), by replacing parts in the optimisation algorithm
with learned components [13, 28, 29, 30, 31], or entirely building network architectures
motivated by the iterative solution process [32, 33].

3 Structural design as an inverse problem

3.1 Demarcating structural analysis and design

The motivation for investigating structural design as an inverse problem arises due to the
failures of the current engineering science paradigm in adequately addressing the true na-
ture of design. Prior to World War II, engineering higher education was originally focused
on the art and practice of engineering [34], yet by the 1960s, due to the success of science-
based ventures such as the Manhattan Project and the rise of government-sponsored re-
search grants that severed the link between academia and industry, engineering science
became the main field of research and teaching at universities [35]. Whilst this research
resulted in powerful structural analysis techniques, it also left engineering graduates with
a noticeable loss of practical engineering skills [36]. In the 1990s and early 2000s, there was
a push to introduce capstone design projects in university engineering degrees in the hope
that this would help students develop such design skills, the success of which is disputed
[37].

There is a broad agreement within the literature that analysis and design are two
distinctively different activities. Structural analysis, which falls into the field of engineering
science, is primarily concerned with establishing knowledge-that explains the world, and
characterised by necessity, certainty and universality; design on the other hand is concerned
with knowledge-how something works, based on qualities of contingency, probability and
particularity [38]. These qualities underline the ill-structured [39], open-ended [40] or
even “wicked” [41] nature of design. These qualities do not lend design easily to science-
based research and might explain why graduating engineering students, who are primarily
taught in engineering science concepts, struggle to understand the true nature of design
in industry.

3.2 Introducing the inverse problem perspective for design

As alluded to in the introduction, these qualitative differences might be accounted for by
recognising that structural analysis and structural design are two fundamentally different
types of problems. Structural analysis is typically seen as a tool within the larger design
process to validate the adequacy of structural elements and justify a particular design for
building approval [42]. However, another perspective is that structural design is in fact an
inverse-problem, with structural analysis forming the related forward-problem.

This perspective is not necessarily completely intuitive, since unlike typical inverse
problems such as the one shown in Fig. 1, where physically measured data (the displace-
ment field) is used to identify the causalities (stiffness properties), in structural design we
are dealing with a mere theoretical construct, or “theoretically” measured data. More rig-
orously, this data entails the set of complex design constraints which need to be adhered to,
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such as ultimate (ULS), serviceability limit states (SLS), sustainability and constructabil-
ity, as well as more subjective drivers like aesthetics. From this perspective, structural
design can be seen as the process of arriving from a specific set of constraints to a viable
structural solution, with analysis being the process of checking if the proposed structural
solution adheres to those constraints as shown in Fig. 2.

Constraints

Forward Problem

Analysis

Inverse Problem

Design

Stable

Usable

Buildable Sustainable

AffordableStructural Solution

Robust

Figure 2: Relationship between structural analysis and design, in which design is the
inverse problem of evaluating a suitable structural solution given a set of constraints. Some
constraints (such as stability constraints) render themselves more easily to quantitative
treatments.

To further highlight the link between structural design and inverse problems, it is worth
emphasising that the key feature of inverse problems is their ill-posed nature, which was
briefly explained in §2. Their characteristics include being unstable, non-unique and at
times un-solvable [43]. Notice how these qualities were already alluded to before as being
“ill-structured”, “open-ended” and “wicked” by previous researchers, yet to the best of our
knowledge, this is the first time that literature has attempted to link structural design with
inverse problems. Table 1 shows how the typical qualities of inverse problems manifest
themselves in structural design.

Ill-posed inverse
problem

characteristics

General
description

Examples in
structural design

Unstable
Small changes in constraints

can lead to large changes
of appropriate solutions

Change in maximum of
structural floor depth on

suitable grid-spacing of columns

Non-unique
For a given set of

constraints, there are multiple
adequate solutions that exist

Various archtypes
of truss designs

Un-solvable
There may be insufficient

constraining data available in order
to evaluate adequate solutions

Lacking knowledge
of geotechnical site conditions

Table 1: Overview of ill-posed inverse problem features in the context of structural design.

We note, that the design problem can be also formulated as an optimal control problem
[44], where the optimal design parameters are thought to be found as minimiser of a penalty
function while satisfying the system equations. Whereas, the optimal control approach can
provide an effective way to solve complicated design problems, it falls short in accounting
for uncertainties or inaccuracies in the forward model, and especially the link between
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measurement and system parameters. We believe that the here lies the strength of the
inverse problems viewpoint, that offers a rich interpretation and link between system
parameters and measurements given as the forward model. This is not only promising
for the optimisation task in the design process, but also for new ways to approach the
modelling of the forward problem.

3.3 The link to structural optimisation

As briefly explained in §2, inverse problems can effectively be solved iteratively, and this
is acknowledged by the iterative nature of the design process [45]. Effectively, this process
involves making an estimate of the structural solution based on experience and design
methods (such as simple rules of thumbs), checking those estimates through an analysis
(forward) model and updating the model if necessary; in other words, this approach is
characterised by creating an optimisation problem. Some examples of forward-driven
optimisation models used in structural design include: optimising the deformed shape of
flexible formwork structures to predefined target geometries [46, 47], best-fit geometry
optimisation of thrust networks in the design of shell structures [48], and finding the
optimal structural forms for long-span bridges [49], gridshells [50], trusses [51], portal
frames [52] and structural sections [53].

Note a key theme in these research works, is that the structural geometry or member
proportions are not initially defined, but rather are form-found or discovered in the process,
based on the defined loading, boundary conditions and objectives. Often these discovered
structural forms may lead to step change benefits in terms of performance or reduced
material usage, as they are unbiased by our preconceived perception of what a ”good”
structure is, or by what we currently design and build in the construction industry with
standard template solutions. It is also true for many cases, that a solution may not even
exist, forcing us to accept a closest best fit solution, or it can be that an optimal solution
may have multiple candidates by virtue of the structure’s static indeterminacy. A common
problem with a forward (sometimes brute-force) optimisation approach, can be lengthy
computational times for structural analyses in the objective functions, and the sheer size
of the design (and hence optimisation) search space, stemming from many wide ranging
input design variables. While fast and globally convergent convex optimisation programs
can be set-up, many practical structural engineering design problems are inherently non-
linear in nature, forcing a slower approach that uses local searches or heuristic methods
with no guarantee of a global optimum. This is a current challenge faced in solving inverse
problem iteratively with forward models.

3.4 Implications of treating structural designs as inverse problems

The following remains to question: ”what are the implications of an inverse problems
perspective in design?” First, as shown in Fig. 2, an inverse problem perspective should
emphasise that design fundamentally asks a different question than analysis, and hence
also requires a completely different type of model. An analysis model solves the forward-
problem, and answers questions such as “what is the ULS utilisation ratio of this particular
beam system for a particular load, with this specific cross-section and support conditions?”.
An appropriate design model would essentially ask the reverse: “what is the group of cross-
sections and support-conditions which ensures a utilisation ratio of less than 1.0 for this
particular beam system to carry this particular load?”. Notice that the magnitude of
loading and the ULS checks serve as the design constraints; both are known “data” and
normally set by the client brief. It is also worth highlighting that the question acknowledges
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the non-uniqueness of the solution space. Whilst engineering science has produced highly
sophisticated analysis models, the research of such “design models” is lacking in academia.

Secondly, the inverse problem perspective also sheds insight on the possibility of using
data-driven approaches as opposed to more typical optimisation based techniques. The
rise of machine learning and deep neural networks could provide an alternative approach
for the development of such “design models”, which focus on directly identifying a set of
structural solutions from a given set of constraints using learned data. These could help
address some of the challenges faced during design due to tight deadlines and the vast
design space which can be explored. On typical design projects, the full implication of
early design decisions are typically only realised once a project progresses to the detailed
design stage, at which point it becomes cost and time prohibitive to effectuate changes.
This can lead to structural solutions that are difficult to build, have poor sustainability
metrics, and be costly to engineer and fabricate, leading to spiralling project delays. If one
instead considers the design process in an inverse manner, rooting firmly first at the end
goal, and trialling many design solutions either rapidly or in parallel, it could be possible
to reduce project risk and pick more effective structures by appreciating many solutions
to the brief from the onset.

Lastly, the ultimate benefit of an inverse problem perspective is that it helps to clearly
distinguish between analysis and design procedures and provides academia with an ad-
equate framework to contextualise design model research. Engineering academia has in
many ways become a prisoner to the engineering science perspective, with the mislead-
ing belief that scientific methods are applicable for engineering design [54]. One of the
uncomfortable implications of this view is that engineers from over 150 years ago, which
trained primarily in the art and practice of engineering design, may in fact have been
better “inverse-problem solvers” than academics and graduating engineers of today (who
are stronger in solving the well-structured forward problems) [55]. The inverse problem
perspective for structural design might help swing the pendulum away from focusing ex-
clusively on forward models (analysis) towards a more stable equilibrium with inverse
models (design) by acknowledging that engineering research should focus on developing
techniques for these two related, albeit distinctively different types of problems.

4 Extreme loads on structures

4.1 Blast loading and inverse analysis

High-rate dynamic loads can arise from events such as earthquakes, wind, tidal waves,
impacts, and accidental or malicious explosions. Here, the imparted load may be compa-
rable or several times larger than the strength of the material it is acting on, it can be
applied and removed in sub-second durations, and is often highly localised. Accordingly,
the notion of static structural design according to a pre-determined distribution of stresses
and strains may not be appropriate, and instead the designer must consider energy bal-
ance, non-linear analyses, and deformation modes for which there is no equivalent static
counterpart.

Blast loading is undoubtedly one of the most aggressive forms of dynamic loading.
When an explosive detonates it undergoes a violent and self-perpetuating exothermic
chemical reaction, releasing energy through the breaking of inter-molecular bonds during
oxidation [56]. The explosive material is converted into a high pressure (10–30 GPa), high
temperature (3000–4000◦C) gas which violently expands, displacing the surrounding air at
supersonic velocities (6–8 km/s). This displacement causes a shock wave to form in the air,
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termed a blast wave, which eventually detaches from the expanding detonation product
‘fireball’ and continues to propagate into the surrounding air, decreasing in pressure and
density as it expands.

When a blast wave encounters an obstacle some distance from the source it will impart
momentum as the air is momentarily (either fully or partially, depending on the compliance
of the obstacle) brought to rest at the air/obstacle interface. Prediction of blast even in
the most simple settings is a considerable challenge to the scientific community. This
becomes an increasingly complex and multi-faceted problem when considering issues such
as: obstacle orientation; proximity of the obstacle to the source and additional momentum
transfer from fireball impingement; secondary combustion effects either at the air/obstacle
interface or in late-time due to partial or full confinement of the explosive products; the
presence of mitigating or blast-enhancing materials (soil, reactive munitions, etc.).

Real-world blast events are highly uncertain, and the need for inverse analysis is clear:
it is very rare that the exact size, shape, composition, and location of an explosive de-
vice is known a priori. Instead, information relating to the cause of an explosion should
be estimated, within reason, from the more readily observed effects, i.e. the magnitude
and severity of structural damage to surrounding buildings, and cratering of the ground
surface. Whilst inverse analysis is well-established for practical post-event assessment
of explosions—and has been used to determine the size/location of blast events through
forensic investigation of social media videos [57] or numerical modelling correlating struc-
tural damage [58, 59]—the use of inverse modelling in an academic context is still to be
exploited fully. In the former, order-of-magnitude estimates are typically deemed suf-
ficient, whereas the latter requires repeatable, precise measurements and high levels of
experimental control.

The lack of robust yet high-fidelity experimental techniques has stifled academic re-
search into close-in blast for some time. Close-in blast is typically defined as the region
within approximately 20 radii from the charge centre, where the blast load in this region is
characterised by a near-instantaneous rise to peak pressures in the order of 100–1000 MPa,
followed by a rapid decay to ambient conditions typically occurring within sub-ms of ar-
rival of the blast wave. Subsequent structural response may reach a peak value in the
order of 10-100 mm and, whilst this may occur orders of magnitude slower than load
application, deformation cycles are still typically within ms durations.

Recently, two notable advancements have been made in experimental characterisation
of close-in blast and structural response. In the first of these, researchers at the University
of Sheffield (UoS), UK, developed a large scale apparatus for the spatial and temporal
measurement of blast pressures from close-in explosions [60, 61]. In the second, researchers
at the University of Cape Town (UCT), South Africa, adapted the well-known digital
image correlation (DIC) technique to measure the transient response of the rear-face of
blast loaded plates [62]. These two techniques were combined in a recent study [63, 64]
where, for the first time, detailed loading maps and temporal structural response profiles
were developed independently, in a single-blind study, for identical (scaled) experimental
set ups.

4.2 Proof-of-concept experimental studies

Of the experiments performed in [63], 12 are relevant to the notion of inverse analysis of
blast loading and structural response, and will be discussed here. Six tests were performed
with spherical explosive charges; three at UoS measuring blast loading and three at UCT
measuring structural response. In the UoS spherical tests, 100 g PE4 charges were located
at 55.4 mm clear distance from the centre of a nominally rigid target, on which the reflected
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blast pressures were measured. In the UCT spherical charge tests, 50 g PE4 charges were
located at 44.0 mm clear stand-off distance from the centre of the flexible target plates:
300 mm diameter, 3 mm thick, Domex 355MC steel plates, fully clamped around the
periphery. The plate response was filmed using a pair of stereo high speed video cameras
and DIC was used to determine transient plate response. The two test series can be
expressed at the same scale using well-known geometric/cube-root scaling laws. Here, it
is assumed that the flexible targets deform on timescales orders of magnitude longer than
loading application, and therefore differences between the loaded imparted to the rigid
and flexible plates are negligible.

Specific impulse is given as the integral of pressure with respect to time. Numerical
integration of the UoS pressure histories (at various distances from the centre of the
plate) yields directly-measured specific impulse distributions. The first few frames of the
UCT tests were used to determine initial velocity distributions of the plate, from which
imparted specific impulse could be inferred through localised conservation of momentum:
i(x) = v(x)ρt, where i is specific impulse, x is distance from the plate centre, v is out-of-
plane velocity of the plate, ρ is density (7830 kg/m3 for Domex 355MC), and t is plate
thickness.

The results for the spherical tests are shown in Fig. 3. The full-field inferred specific
impulse distributions are in close agreement with the discreet, directly measured values,
and both measurements form a tight banding in an approximate Gaussian distribution
[65]. Not only does this indicate a high level of test-to-test repeatability for each method,
but demonstrates that the two methods are measuring the same underlying phenomena,
albeit in entirely different ways. Thus, it can be said that an imparted impulse will result
in an initial velocity uptake which is directly proportional, and therefore measurement
of one allows for the other to be determined. This proves the concept of using plate
deformation under blast loads in an inverse approach—namely that from knowledge of
plate deformation one may be able to determine the imparted load—and provides physical
verification of the inverse approach developed by [66, 67].

In addition to the spherical charge tests, six tests were performed in [63] using squat
cylinders (height:diameter of 1:3). Such charges are known to produce a more concentrated
load, with the fireball propagating at higher velocities along the axis of the charge [68].
This accelerates the growth and emergence of fireball surface instabilities [69], which has
been observed to give rise to a more variable loading distribution [70]. A key research
question in this study was: ”will a more variable loading result in more variable structural
response?” In the UoS cylindrical tests, 78 g PE4 charges were located at 168.0 mm
clear distance from the centre of the target, and in the UCT cylindrical tests, 50 g PE4
charges were located at 145.0 mm clear distance from the centre of the target. Again,
specific impulse distributions were both directly-measured and inferred from plate response
respectively, and the experiments were expressed at the same scale using common scaling
laws.

The results for the cylindrical tests are shown in Fig. 4. Whilst the two methods again
show good agreement, the results can be seen to form a much wider spread. In contrast
to the spherical tests, where peak specific impulse was seen to consistently act in the
plate centre for all tests, here the peak value is often up to 25 mm from the plate centre
(approximately equal to the charge radius), in both the directly-measured and inferred
values. The inferred values are generally bounded by the directly-measured values, which
suggests that this spread is indeed a genuine feature caused by application of more variable
load.
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Figure 3: Directly-measured (UoS) and inferred (UCT) specific impulse distributions from
studies of blast loading and plate deformation following detonation of spherical explosives,
expressed at 100 g (UoS) scale, after [63]
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Figure 4: Directly-measured (UoS) and inferred (UCT) specific impulse distributions from
studies of blast loading and plate deformation following detonation of cylindrical explo-
sives, expressed at 78 g (UoS) scale, after [63]

4.3 Outlook

The aforementioned studies [63, 64] have provided a firm physical basis for inverse anal-
ysis in the context of extreme loading and structural response. The results have clear
implications for the future of research in this area. Namely, it has been demonstrated
that not only can inverse analysis provide excellent predictions of blast loading in repeat-
able, well-controlled situations (as with the spherical tests in [63]), but structural response
measurements are potentially sensitive enough to detect localised variations in loading (as
with the cylindrical tests in [63]). This is particular important in situations where a highly
variable loading might be expected (e.g. from explosives buried in well-graded soils [71]),
but statistical variations cannot be determined in a robust sense when using direct mea-
surements (note the discrete nature of the direct measurements in this study, compared
to the effectively continuous nature of the inferred measurements).

This technique may permit, through inverse methods, fundamental scientific studies
of complex mechanisms governing blast loading following close-in detonation of explosive
charges in situations where previous research has not yet been possible.

5 Structural health monitoring

5.1 Background on inverse methods in SHM

Inverse problems are deeply connected to SHM. In fact, computerised damage detection
can generally be recognised as either a pattern recognition or inverse problem [10, 72, 73]
where unknown or uncertain parameters (causalities) are estimated via quasi-static or
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dynamic structural response data. Among the numerous inversion-based approaches, FEM
updating methodologies are among the most pervasive [74, 75, 76, 77]. Much of the noted
popularity is owed to the flexibility of the FEM for comparing modal parameters to an
undamaged state and in compensating model errors.

Meanwhile, analytical [78], wavelet [79], fractal [80], fuzzy system [81], Kalman filter
[82], chaotic interrogation [83], shape function [84], and particle filtering [85] approaches,
among many others, have proven successful in uncertain inverse parameter identification
applications within SHM. Broadly speaking, inverse SHM approaches can be grouped as
either deterministic or probabilistic [86] – which is also generally the case in classical inverse
problems [12]. In the latter case, estimation of uncertain SHM parameters takes the form
of a probabilistic term, for example a value with an associated certainty, a probability
itself, etc.

Irrespective of the computational approach used in damage detection, two key reali-
sations affect the efficacy of inversion methodologies: (a) a baseline is generally needed
to detect/quantify damage [87] and (b) the presence of damage inherently influences the
linearity of structural behaviour [88]. In addressing (a), reference-free or baseline-free
frameworks have been introduced [89, 90, 91, 92] via the introduction of either assump-
tions on the reference state, implementation of prior physics knowledge, or probabilistic
regimes. On the other hand, non-linearity in the structural response can either act as a
corrupting entity when linear forward models are used (e.g. unacceptable forward model
error) or used as an advantage when properly leveraged. Regarding the latter, as noted in
[88], methods based on non-linear indicators, dynamical systems theories, and non-linear
systems identification approaches can be used to aid or enrich the damage identification
process; such a conclusion can also be extended to the pure usage of inverse approaches
in damage detection.

In the past thirty years, implementation of inversion-based damage detection methods
in SHM has steadily increased. This is due to both the increase in inverse problems know-
how and computational resources. Yet, since the emergence of contemporary machine
learning, the ability to solve problems deemed previously intractable has exponentially
increased opportunities in this area. For example, in many cases, forward models may
not be available or are too computationally expensive, sufficient non-linearity may exist to
effectively model the desired physics, errors in highly reduced models may be excessive, the
ability to compute model gradients may be overly expensive, etc. Moreover, the ability
of classification networks to readily classify important variables such as the probability
and/or severity of damage from structural data is intuitively appealing and pragmatically
useful. In the following, we will provide contemporary examples highlighting the use of
both classical and machine learning based SHM inverse approaches.

5.2 Static inverse problems in SHM

Incorporation of discrete static (or quasi-static) data measured from structures into SHM
frameworks is well established. For example, a number of sources, including corrosion,
relative humidity, fibre-optic, topography, laser, potentiometer, strain gauge, electrical,
and thermal sources, have been successfully integrated into long-term condition monitoring
protocols [93]. The richness of spatial-temporal data obtained from these sources lends
itself well for use in inversion-based SHM, i.e. given a set or sets of static SHM data,
use an inverse methodology in capturing (potential) damage. This is true in cases where
numerical models are available for the problem physics and when they are not (e.g. learned
models can act as surrogates when physics-based models are unavailable).

The sheer volume of literature available reporting the successful use of static inversion
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methods in SHM is formidable. However, roughly speaking, static inverse methodologies
have been implemented within three areas, (a) point sensing, (b) area sensing, and (c)
volumetric sensing. Holistically, it can be difficult to distinguish between each of these
areas; for example, when lower dimensional measurements are extrapolated to characterise
damage in area or volume targets [94, 95]. One such example is Digital Image Correlation
(DIC), where the displacement field at discrete points on a structure is inversely computed
via pixel movement and then extrapolated (interpolated) to a full-field, whereby the qual-
ity of the computed field is highly dependent on the quality of the contrasting area speckle
pattern [96]. Similarly, one may consider the distinguishing of static measurement di-
mensionality as a local-global phenomenon where discrete local changes contribute to the
analysis of the global structural system [94]. Lastly, to complicate matters even more, the
use of discrete measurements can yield 2- or 3D information – as in the case of penetrative
electrical measurements, where currents diffuse through the entirety of a body [97].

Fortunately these, perhaps philosophical realisations, are often washed out via the na-
ture of inversion methodologies themselves. Pragmatically, at least in the context of SHM,
the solution to static inverse problems generally requires a model, either physics based or
learned. As such, the amalgamation or assimilation of data and solution dimensionality
is often simply a matter of discretisation or model generation. In a similar vane, when
static inverse problems are ill-posed, solutions generated using lower dimensional data are
regularised/biased using prior models consistent with the solution dimension.

Many examples are available in the literature illustrating the efficacy of static inver-
sion methodologies for applications in a suite of SHM implementations. For example,
the use of displacement measurements for capturing SHM causalities in various struc-
tural geometries was reported in [98, 99, 100]. Of note, the specific applications using
displacement fields to reconstruction elastic ans elasto-plastic properties (and correspond-
ing damage characteristics) has been the source of significant research [101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115]. One such example using
full field displacements to infer damage via elastic property reconstructions is provided
in Fig. 5. In the pervasive case where displacement/strain measurements are discretely
measured from strain gauges/fibre optics, inverse methodologies have also been fruitfully
employed for damage characterisation, pressure and strain mapping, and shape sensing
[116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]. Perhaps one measure illustrating
the success of such inverse approaches is highlighted by the recent interest in optimising
the related sensing schemes [128, 129, 116, 130].

𝐸𝐸1 (GPa) 𝐸𝐸2 (GPa) υ12 (-) υ21 (-) 𝐺𝐺 (GPa)

Figure 5: Reconstructions of orthotropic elastic properties using DIC measurements from
a locally-damaged unidirectional composite beam from [107].

In the past decade, the emergence of electrical inverse methods has also proven a
viable approach to static condition monitoring. This family of inversion-based modali-
ties generally utilises three different data sources including capacitative, direct current,
and alternating current based measurements. Capacitative sensing is perhaps the newest
of these approaches to sensing, where SHM causalities can be inversely computed using
smart bricks [131], area sensors [132, 133, 134, 135], and electrical capacitance tomography
[136, 137]. On the other hand, owing to its established history in medical and geophysical
applications, electrical impedance tomography (EIT, or electrical resistance tomography,
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ERT) is becoming a well established approach to damage detection, reconstruction, and
localisation especially in concrete applications. For these, EIT presently manifests via two
approaches, reconstructing conductivity maps using boundary voltages measured from
area sensing skins [138, 139] or directly imaging a 3D cementitous body [140]. Represen-
tative 2D EIT reconstructions are provided in Fig. 6 using a machine learned approach
(direct reconstruction) for imaging flexural and shear cracks in concrete elements. To this
end, EIT has also been used for characterising area corrosion [139] and localising area
temperature variations [141].

a) Simulated shear crack patterns b) Reconstruction of shear crack patterns

c) Experimental image of a flexural crack d) Reconstruction of a flexural crack

Figure 6: Reconstructions (right column) report probabilistic predictions of local flexural
and shear cracking in a concrete elements. The colour bars represent the probability of
potential cracks at nodal locations: (a) simulated shear cracking pattern, (b) probabilistic
prediction of the corresponding shear crack pattern using a convolutional Neural Network,
(c) experimental photo of a flexural crack in an area sensing skin, and (d) probabilistic
prediction of the corresponding flexural crack using a feedforward neural network.

In summary of this subsection, it is clear that the use of inverse methodologies in static
SHM applications is pervasive. Meanwhile, a number of inversion-based modalities are still
emerging – or are yet to emerge. Indeed, given the number of potential static data sources
available at present, there exist substantial opportunities to investigate or formulate new
inversion based modalities. In the light that some physical models for various underlying
physics remain unavailable (either in open source or in general), the use of learned models
may bridge this gap. Lastly, there currently exists tremendous opportunities in the areas
of data fusion and joint imaging, which remain predominately unexplored in the area of
static inversion based SHM [142].

5.3 Dynamical inverse problems in SHM

The use of dynamical data for monitoring the health and condition of structures is well
established [143]. For this, a number of data sources are available, for example discrete
acceleration, strain, displacement measurements, and recently, coupled electromechanical
impedance via piezoelectric transducers [144, 145]. In the case of typical civil infrastructure
[146], the ability to actively excite monitored structures is pragmatically challenging due
to the extreme magnitude of the excitation required to attain a distinguishable response.
For this reason, ambient monitoring methodologies have gained significant popularity in
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recent years [147, 148, 149]. Irrespective of the dynamical monitoring approach used, ex-
tracting dynamical structural properties of interest can be viewed as an ill-posed inverse
problem [150]. The ill-posedness of such problems results from a number of actualities,
not limited to uncertainties in environmental conditions (wind, temperature, ground con-
ditions, humidity, etc.), traffic, measurement noise, the discrete nature of measurements,
material characteristics and numerical modelling error.

Frameworks used in solving dynamical inverse problems in SHM are widely reported
in the literature. One of the most pervasive approaches is model updating, which gener-
ally aims to match a physics-based model (such as a representative finite element model)
to measured dynamical data [88, 72], commonly using a form of modal analysis [151,
152]. The physics-based techniques are particularly efficient in providing higher accu-
racy when testing is restricted. It is often the case that reconstructing the dynami-
cal SHM properties of interest proves difficult, requiring an innovative approach; some
proposed frameworks have included advanced optimisation protocols [153] and mode de-
composition/superposition [154, 154]. Alternatively, the use of phase space [155], state
space [156], singular value decomposition [157], auto-regressive [158, 159], Gaussian pro-
cess [160], and Bayesian/stochastic approaches [161, 162, 163, 164] have proven success-
ful. As noted in the previous subsection, one metric for assessing the progress in this
field is the number of works aiming to optimise sensing information, for example in
[165, 166, 130, 167, 168, 169, 170, 171, 172].

To this point, the use of distributed dynamical data for monitoring primarily large
structures and structural elements has been discussed. However, in approximately the
past twenty years, guided wave based modalities have emerged as a viable approach to
dynamical inversion based SHM [173, 174, 175, 176, 177, 178, 179, 180]. Common physical
manifestations of guided waves include Lamb waves (propagating through thin shell and
plate structures) [181], Rayleigh waves (surface waves) [182], and shear waves. Generally
speaking, SHM systems consist of transducer systems used for actuation and measurement
accompanied with an inversion algorithm aiming to reconstruct SHM causalities of interest.
Owing to a number of numerical challenges, conventional solutions to related inverse guided
waves problems are generally not feasible [177]. Consequentially, alternative methodologies
have been proposed including, for example, inverse filtering [183], reverse time migration
[184, 185], Bayesian/probabilistic [186, 187], amongst emerging inversion approaches.

While not comprehensive due to the breadth of inverse problems in dynamical SHM,
this subsection has aimed to provide a glimpse into the innovation and emerging method-
ologies used in the area. Without question, the use of dynamical inversion based techniques
is well established in conventional monitoring. However, in some areas (such as guided
wave monitoring) it remains in the early stages of development and affords numerous
research opportunities. Lastly, it is worth mentioning that with the advent of modern ma-
chine learning methods, we can only anticipate significant advances in forthcoming years
as trained networks are now capable of addressing key SHM challenges related to, for
example, model error estimation/correction [188] and reducing computational demands
associated with many SHM facets [189, 190].

5.4 Computer vision inverse problems in SHM

In the past decade, computer vision-based SHM methods have become an emerging field
in inverse engineering problems. Relying on digital images, videos, and computer vision
algorithms, vision-based SHM techniques enable affordable and rapid structural prognosis.
The concept of vision-based inverse problems is straightforward: visual information from
the external surfaces of structures is captured through non-contact digital cameras, serving
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as input data for computer vision algorithms in detecting, localising, and quantifying
structural damage in a variety of contexts.

Computer vision-based inverse problems can be either static or dynamic in nature.
In dynamical environments, a digital camera is treated as a vision sensor measuring dy-
namic structural responses. Instead of directly capturing the structural vibration through
contact-based sensors (e.g. accelerometers), computer vision algorithms can track struc-
tural responses through a series of digital images or a video stream. For example, in [191],
researchers applied a video feature tracking technique to measure the pixel movements of a
structural component under a service load using a consumer-grade digital camera. These
movements were then converted into displacements using a scaling factor. The proposed
method was subsequently verified against measurements obtained via a linear variable dif-
ferential transformer (LVDT) in a setup capturing dynamic response of a structural girder
in a football stadium. Similar efforts have been reported in [192, 193, 194]. Furthermore,
through the usage of cameras as displacement sensors, other key structural features, such
as natural frequencies/mode shapes [195, 196], beam influence lines [197], and bridge cable
loads [198] have been be estimated.

In addition to tracking the surface motion, computer vision algorithms can offer rapid
and reliable inspections against different types of structural damage such as cracks [199],
concrete spalling [200], steel corrosion [201], and other structural deterioration [202]. To
make it is viable, researchers develop computer vision algorithms to scan and extract
damage-induced visual features either across the entire image scene or within a small
predefined image patch (e.g. region of interest) that is prone to structural deterioration.
In general, the image-based damage extraction techniques can be categorised as: (a)
machine or deep learning-based methods; and (b) non-learning based methods.

The idea of machine or deep learning-based (computer vision) methods is to train a
damage detection classifier through an image dataset with pre-labeled structural damage.
Thereafter, a computer vision algorithm is used in characterising structural damage from
newly captured images. Some of the successful applications in this field include detection
of concrete cracks [203, 204, 199] and spalling [200], steel cracks [205, 206], bolt loosening
[207, 208], steel surface defects [200, 209], pavement cracks [202], and complex situations
where multiple damage types exist [210]. In contrast, non-learning based methods can
directly pick up image features caused by structural damage, and hence do not require
any prior knowledge in training the classifier. For instance, fatigue cracks in steel bridges
can be identified through crack breathing behaviour [211]. Also, loosened bolts in steel
connections can be quantified by extracting the differential features provoked by bolt
head rotations [212]. Fig. 7 illustrates an example by comparing two images of a steel
connection at different inspection periods to extract the differential features provoked by
the loosened bolts.

Figure 7: An example of vision-based bolt loosening detection where image (a) and (b) are
images of a bolted connection taken at different inspection periods. Two loosened steel
bolts are shown in the blow-up figures with counterclockwise rotations in their bolt heads.
Using a series of image processing techniques, the differential features caused by the bolt
loosening can be identified in c). Detailed discussion can be found in [212].
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The concept of image-based damage extraction can be extended from detecting macro-
level structural damage (e.g. cracks, corrosion) to quantifying micro-level material char-
acteristics (e.g. strain fields, displacement fields, micro cracks). DIC techniques have
been well studied in the past decades to fit such a role. The technique enables an ac-
curate measurement of subtle changes of the structural surface through comparison of
images taken at different time periods. Generally, DIC approaches rely on professional-
grade digital cameras, surface roughness pre-treatments, applied speckle patterns, special
lighting conditions, and/or off-the-shelf image processing software platforms. Some rel-
evant DIC applications in the contect of computer visions include reconstructing strain
fields [213, 214], evaluating micro cracks [215], quantifying the stress intensity factor for a
fatigue problem [216], and capturing displacement fields [217].

Computer vision-based methods also show great promise for damage detection and pat-
tern recognition for full scale civil structures. Utilising the platform of unmanned aerial
vehicles (UAVs), the on-board UAV camera can rapidly scan the structure including the
locations that are challenging to be accessed by traditional contact-based sensors. As a
result, the condition of the structure can be estimated and delivered to the stakeholders
in a timely manner. For example, researchers in [218, 219, 220] applied UAVs and vi-
sion algorithms to leverage effective approaches for post-earthquake building inspections.
Similar efforts have been reported for inspecting dams [221, 222, 223], tunnels [224, 225],
and railways [226]. Other researchers adopted satellite images to examine damage status
over a larger scope of work (i.e., multiple buildings at the community level) after natural
disasters such as flood, earthquake, volcanic eruption, hurricane, and wildfire [227, 228].

UAV platforms are also capable of collecting a large volume of images of civil structures
under different camera angles through automated route planning. Such an advantage
can be further enhanced by a computer vision workflow, termed photogrammetry, for the
purpose of reconstructing the 3D model of the structure. Relying on structure-from-motion
with multi-view stereo (SfM-MVS) algorithms [229], photogrammetry technique can create
a 3D structure model based on 2D images. The 3D model could be a dense point cloud,
a polygonal mesh model, or a textured model depending on the engineering demands, all
of which can be generated through many existing off-the-shelf photogrammetry software
packages (e.g. Agisoft Matashape, PIX4Dmapper, ContextCapture). Photogrammetry
leverages several potentials in inverse SHM problems. For instance, in recent work, [230]
created a dense point cloud of a building in the construction site based on UAV images.
Then the point cloud was integrated with a building information modelling (BIM) model
for labelling the structural components in original UAV images. In [231], the researchers
utilised the dense point cloud to assist the creation of a finite element model of a masonry
bridge. The authors argued the benefit of the point cloud is twofold: the point cloud
depicted the accurate geometric information of the bridge and offered the results of bridge
crack distribution. In [232], researchers generated orthophotos from the textured model
generated from a photogrammetry workflow, based on which concrete cracks and spalling
of a highway bridge can be quantified. Lastly, in the context of the 2021 Hernando de Soto
Bridge incident [233], where a large crack was discovered in a ”fracture critical” element
by a private engineering firm – yet, previously identified approximately two years earlier
by a local operating a commercially available drone: the use of coupled UAV/computer
vision approaches to SHM may be more valuable than ever.

5.5 Digital twins and outlook

As this section has illustrated, the use of inverse methodologies in SHM is both well es-
tablished and an area of active development. With the rapid digital transformation of
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structural assessment and infrastructure asset management, the emergence of numerous
digitally-inspired technologies will play a key role in the future trajectory of inverse prob-
lems in SHM. At the forefront, digital twins have been the source of increasing research
and industrial interest in recent years [234]. While the scope of digital twins’ applications
spans beyond SHM alone, its basic aim is to provide information on the current or future
state of an asset by combining real-time data and a physical/data-driven model offers many
potential avenues for engagement with the inverse problems community. Nonetheless, in
specifically considering a classical SHM application, such as damage localisation [235]:
developments stemming from the inverse community including, for example, state estima-
tion [236, 237, 238], uncertainty/model error approximation/compensation [239, 188, 240],
regularisation [241], and model reduction [242], have excellent potential for enriching or
enhancing digital twin frameworks.

As a whole, the future outlook for the integration and advancement of inverse method-
ologies in SHM is very bright. Indeed in the past 20 years, we have seen an exponen-
tial increase in high-performance computing and graphical processing processing units
development and assimilation into modern civil and mechanical engineering applications
[243, 244]. Coupled with powerful inverse frameworks for large-scale problems (e.g. Krylov
solvers [245] and distributed computing [246]) and machine learning [247], we can only ex-
pect a steady increase in (a) the breadth of inverse problems the SHM community is able
to address and (b) and an evolution in innovative inversion-based approaches to solving
increasingly challenging SHM problems.

6 Smart materials and structures

So-called smart or self-sensing materials have received immense research attention in re-
cent decades [248, 249, 250]. A material is said to be self-sensing if it exhibits a measurable
property change in response to external stimuli. These materials are able to intrinsically
report on their health or condition in a spatially continuous manner and with less hard-
ware/instrumentation burden than is needed for traditional discrete or point-based sensing
technologies (e.g. strain gauges, piezoelectric patches, accelerometers, etc.). In the context
of structural engineering, external stimuli are often mechanical effects such as deformation,
damage, or loads acting on the structure. Hence, integrating smart materials into next-
generation structures may allow for unprecedented health monitoring and diagnostics.

Although ‘self-sensing’ is an umbrella term encompassing many different physical ef-
fects, self-sensing via the piezoresistive effect has perhaps received the most attention to
date (see recent reviews [248, 251, 252]). Piezoresistive materials are so-named because
they exhibit a change in electrical conductivity (or its inverse, resistivity) upon defor-
mation. This means that every point of a self-sensing material is capable of relaying
information on its mechanical state. Damages such as voids, ruptures, or fractures can
also be detected since the removal of material represents a conductivity loss. But despite
the seemingly great potential of self-sensing materials for structural health and condition
monitoring, spatially-continuous piezoresistive-based sensing presents two challenges of
particular relevance to inverse problems: (a) It is not practical to instrument electrodes
to measure conductivity changes at every point on a structure, which means that it is
necessary to deduce a spatially continuous conductivity mapping from a finite set of elec-
trical observations. And (b), even if we could recover a spatially continuous mapping of
the conductivity distribution, electrical properties are of little consequence to the struc-
tural engineer. We would much rather know the underlying displacement field or damage
condition that gives rise to an observed conductivity mapping. In the forthcoming, we
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will address both of these inverse problems. First however, a brief summary of the physics
and prevailing approaches of modelling piezoresistivity in engineered nanocomposites is
provided. It will be seen later that modelling techniques are essential to solving the second
inverse problem described above.

6.1 Piezoresistive nanocomposites

Many materials intrinsically exhibit some extent of piezoresistivity without explicitly
building in self-sensing capabilities. For example, carbon fibre-reinforced polymers (CFRPs)—both
continuous and short-chopped fibre—are well known to change conductivity when loaded
elastically [253, 254]. Here however, we will instead focus on materials that have been
engineered to be self-sensing; that is, an additional constituent has been added to the
material system without which it does not exhibit piezoresistivity. This is most com-
monly done by adding a conductive phase to a non-conductive matrix such as polymers
(including structural polymers like epoxy vinyl ester [255], polymeric thin films for use
as sensing skins [256], laser-induced graphene inter-layers in continuous fibre composites
[257, 258], and even polymer binders in energetic materials [259]), cements [260], or ce-
ramics [261]. Electrical transport is then a consequence of percolation – the composite
conducts electricity when sufficiently many conductive fillers have been added to form an
electrically connected network. Because the percolation threshold decreases with aspect
ratio, conductive fillers with ultra-high aspect ratios like carbon nanotubes (CNTs) are
popular. There are considerable challenges associated with manufacturing CNT-based
nanocomposites such as achieving good dispersion – ultra-small fillers such as CNTs have
a tendency to ‘bunch up’ or agglomerate which can degrade the mechanical properties
of the final composite. But manufacturing challenges are outside of the scope of this
manuscript and are well-covered elsewhere [262, 263].

Because of the potential for spatially continuous strain sensing, considerable effort
has also been devoted to the development of piezoresistivity models (i.e. forward models
used later for piezoresistive inversion) – computational and/or analytical means of pre-
dicting how conductivity changes for a prescribed strain. These efforts can be broadly
categorised as (a) equivalent resistor network models [264, 265, 266], (b) computational
micro-mechanics models [259, 267, 268, 269], or (c) homogenised macroscale models [270,
271, 272]. (a) Equivalent resistor network models take perhaps the most intuitive ap-
proach to the piezoresistive effect; high aspect ratio fillers like CNTs are represented as
either straight or wavy/curved sticks in a micro-domain [264, 265, 266]. These sticks
are then discretised into resistors based on the length, diameter, and conductivity of
the fillers, whereas junctions between sufficiently close fillers are discretised into resistor
elements based on the equivalent resistance felt by an electron as it goes from filler-to-
filler due to either contact resistance or quantum tunnelling [273]. The conductivity of
the nanocomposite can then be calculated from the overall resistance of the discretised
nanofiller network and the dimensions of the micro-domain. For a prescribed deformation
of the micro-domain, the translation and rotation of the fillers can be calculated via elas-
ticity by treating them as rigid-body inclusions [274]. Post-deformation, the conductivity
of the micro-domain is recalculated thereby allowing the piezoresistive properties of the
composite to be predicted.

As an alternative to equivalent resistor network models, (b) computational micro-
mechanics models use computational means to simulate both phases of the composite –
the non-conductive matrix and the conductive fillers [259, 267, 268, 269]. Because of this,
and unlike equivalent resistor network models, computational micro-mechanics models
can incorporate more nuanced mechanical effects such as nanofiller-to-matrix debonding,
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nanofiller deformation, etc. A limitation of this approach, however, is that computational
micro-mechanics models are computationally expensive due to individual nanofillers and
the enveloping matrix being explicitly simulated. It is therefore difficult to scale these
models to structural levels.

And as a final representative technique, (c) homogenised macroscale models describe
the conductivity of the nanocomposite as an analytical function of the applied strain
state. In other words, individual nanofillers are not simulated. Rather conductivity (or
resistivity)-strain are coupled through analytical functions based on excluded volume the-
ory [271] or via ‘constitutive’ tensors (note that these are not proper constitutive relations
because conductivity and strain are not energy complements) [272, 275, 276]. This ap-
proach is therefore less computationally expensive than equivalent resistor network and
computational micro-mechanics models. Importantly, homogenised approaches can be
readily integrated with structural analysis tools such as the finite element method, thereby
allowing for macroscale piezoresistive analyses. As will be discussed in §66.3, this feature
is essential for another inverse problem in smart materials and structural engineering –
strain recovery via piezoresistive inversion. Despite these advantages, analytical models
have their share of limitations such as having to make assumptions regarding average inter-
filler spacing, average orientation of nanofillers, and the need for calibration or training
data. They may also suffer from local inaccuracies due to the highly variable nature of
piezoresistive nanocomposites.

6.2 Conductivity imaging via EIT/ERT

As discussed previously in §55.2, electrical conductivity imaging modalities such as EIT
(or DC resistivity imaging via ERT) have recently been explored for damage detection and
health monitoring in structural materials [252]. EIT is a natural complement for materials
that are self-sensing via the piezoresistive effect because it allows for spatial localisation
of not only damage, but it also allows for spatially continuous mapping of deformation
and strain. There are several factors that make the EIT particularly interesting to pair
with self-sensing materials: (a) This combination allows for sub-surface strain imaging.
That is, a myriad of techniques exist for monitoring surface strains such as strain gauges,
DIC, holographic methods, etc. Tools for studying sub-surface strains, however, are much
more limited, often require ionising radiation, and can be costly (e.g. volumetric strains
via X-ray digital volume correlation [277]). (b) Aspects of EIT that are typically seen
as limitations in other applications such as biomedical imaging are actually of benefit to
piezoresistive materials. For example, the simplest and perhaps most pervasive imple-
mentation of EIT favours spatially smooth solutions. This is obviously undesirable when
imaging discontinuous features with distinct boundaries such as organs in a living body.
Strain fields, however, are often smoothly varying thereby playing into EIT’s strengths.
And (c), because piezoresistive materials are engineered, we can leverage our knowledge of
their piezoresistive response to build reasonable constraints into the EIT inverse problem
(i.e. by knowing the upper and lower bounds on conductivity change within a strain range
of interest). Two examples of strain imaging via EIT in self-sensing polymeric composites
are shown in Fig. 8. In both these cases, knowledge of the piezoresistive properties of the
composites is leveraged to build conductivity change bounds into the EIT inverse problem.

There have been many studies on the topic of EIT and piezoresistive materials. A
few representative examples are summarised in this manuscript, but interested readers are
directed to a recent review for a more in-depth discussion [252]. Some of the first work in
this area made use of self-sensing nanocomposite thin films (or sensing skins) produced
by a layer-by-layer fabrication technique [256, 278]. These sensing skins were applied to
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substrates, and EIT was then used to identify and spatially localise deleterious effects
including mechanical etching, pH exposure, impact damage, and residual strains from
impacts. Further on the topic of polymer-based composites, thin pressure sensors were
produced by embedding a non-woven textile modified with CNTs into a soft elastomer.
EIT was then employed to visualise various pressure distributions including non-uniform
distributions [279]. EIT was also recently applied for damage detection in a ceramic-
based composite that was modified with micron-sized waste-iron particles [280]. And as a
final representative example, this time with regard to cementitious materials, self-sensing
cement composites have been produced by spray-depositing a CNT-modified latex on the
aggregate phase. EIT was then successfully used to detect and localise various damages
in the material [281].

6.3 Piezoresistive inversion

The preceding sub-sections have summarised self-sensing materials and their relevance to
EIT. Even though solving the EIT inverse problem allows for the spatially continuous
visualisation of mechanical effects in these materials, this poses an obvious problem –
structural engineers and mechanicians are generally not interested in electrical effects like
conductivity. They would much rather know the spatially-varying components of the strain
tensor, stress tensor, or precise damage characteristics of the structure or material since
these factors drive structural analyses and health assessments. Recalling also that various
macroscale piezoresistivity models exist as described in §66.1, we can formulate another
inverse problem as follows: ”for a given EIT conductivity distribution (or, more directly,
for a given set of EIT boundary data) and with an accurate model of conductivity-strain
or conductivity-damage coupling for a particular material, can the precise mechanics of
the system be recovered?”

Both of these piezoresistive inversion problems—strain recovery and damage recov-
ery—are challenging. The former is challenging because, under ideal circumstances, we
seek six components (in 3D) of a strain tensor from a scalar conductivity field. Prospects
can be improved somewhat by instead seeking the displacement field (i.e. three unknowns
in 3D) from the conductivity data and making use of reasonable assumptions (e.g. plane
strain and plane stress) where applicable, but the displacements-from-conductivity inverse
problem is nonetheless under-determined. The challenge is exacerbated by the fact that
circumstances are never truly ideal; conductivity and conductivity changes are not exactly
isotropic (especially for self-sensing continuous fibre composites), and EIT cannot image in-
dividual components of a conductivity tensor. Even for the latter case of damage imaging,
one must still have an accurate model of material breakage-induced conductivity changes,
which is certainly not trivial. For simple nanofiller/matrix phase nanocomposites (i.e.
without reinforcing fibre), material breakage can be modelled as a cessation of electrical
transport. For more complicated material systems such as nanofiller-modified continuous
fibre composites, however, material breakage-induced conductivity changes must account
for factors such as anisotropy and residual post-damage conductivity due to, for example,
inter-laminae contact. And even if a suitable damage model is developed, the inverse
solver needs to be capable of reproducing potentially complex damage shapes that are not
readily amenable to parameterisation. Both strain and damage recovery are additionally
hampered by the fact that EIT does not produce accurate conductivity distributions in
an absolute sense (i.e. EIT generally underpredicts conductivity change magnitudes) or a
spatial sense.

Despite these challenges, the piezoresistive inversion problem has received some atten-
tion to date. An initial effort in this area used an analytical inversion framework pred-
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Figure 8: Examples of the EIT and piezoresistive inversion inverse problems applied to
self-sensing nanocomposites. a) A soft CNF-modified polyurethane is deformed by three
rigid, non-conductive indentors [282]. EIT is then used to image the deformation-induced
conductivity changes, and piezoresistive inversion is used to recover the displacement field
of the material (multiplied by a factor of five for ease of visibility). b) A hard CNF-modified
epoxy is loaded in tension with a stress raiser at its centre [283]. EIT is again used to image
the resulting conductivity change (note the large conductivity changes in the vicinity of the
hole). Lastly, piezoresistive inversion is used to recover the underlying displacement field.
From this and with knowledge of the material’s elastic properties, strains and stresses can
be spatially mapped. The first principal stress of the guage section is shown here along
with comparison to a traditional FEM solution for validation.

icated on iteratively minimising the l2-norm of an error vector between a predicted and
observed conductivity distribution [284]. Although this work was entirely computational
and limited to simple deformations and infinitesimal strains, it nonetheless demonstrated
that piezoresistive inversion was possible. The next work in this area used EIT to image
strain-induced conductivity changes in a carbon nanofiber (CNF)-modified polyurethane
(PU) composite [282]. CNF/PU is a soft elastomeric composite that can be easily de-
formed by hand. Three marbles (i.e. comparatively rigid non-conductive indentors) were
pushed into the CNF/PU as EIT measurements were taken. An analytical piezoresistive
inversion approach predicated on iteratively minimising the l2-norm of an error vector was
again used to reproduce the displacement field (and hence the strain and stress fields via
kinematic and constitutive relations, respectively). Two important factors differentiated
this study – experimental validation of piezoresistive inversion and successful application
to materials undergoing finite strains. Later works looked at utilising metaheuristic algo-
rithms for solving the strains-from-conductivity inverse problem in a CNF-modified epoxy
[283, 285]. The CNF/epoxy was moulded in the shape of a plate with a hole and loaded
in tension, causing strain concentrations in the vicinity of the hole. Metaheuristic algo-
rithms including genetic algorithms, simulated annealing, and particle swarm optimisation
were explored because it was observed that the analytical formulation failed to converge
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to the physically correct solution for this more complex loading state. It was found that
genetic algorithms performed the best for this inverse problem, but all methods compared
favourably to DIC experimental validation. Because epoxy is relatively brittle, these stud-
ies were necessarily limited to infinitesimal strains. Despite the successes of the preceding
studies on strain recovery, they were all limited to more-or-less isotropic materials (electri-
cally and mechanically). Translating these capabilities to electro-mechanically anisotropic
materials remains a daunting challenge. Fig. 8 also shows some preliminary results for
strain recovery via piezoresistive inversion.

Some work has also been done for damage recovery via piezoresistive inversion. Recall
that a key challenge with the damage recovery inverse problem is shape parameterisation.
To that end, these preliminary studies have considered relatively simple damage cases. For
example, various machine learning algorithms were used to categorise three damage con-
ditions (in addition to an undamaged or healthy condition) in a self-sensing bone cement
directly from EIT boundary voltage data [286]. To clarify, bone cement is poly(methyl
methacrylate) (PMMA) used to facilitate robust contact between an othopaedic implant
(e.g. a total joint replacement) and hard bone. Failure of the PMMA interface is often
difficult to detect via radiographic imaging, hence the motivation for alternative diagnos-
tic tools. This clarification aside, the parameterisation was relatively simple in this case
– only four distinct damage states were possible. Nonetheless, the combination of EIT
boundary voltage data, self-sensing PMMA bone cement, and machine learning allowed
for correct damage classification with over 90% accuracy. Elsewhere, image recognition-
based machine learning was used to identify, size, and localise through-hole damage to
a self-sensing composite plate [287]. In this study, the image recognition algorithm was
trained using computationally generated EIT images on a simple square domain punc-
tured by a random number of randomly sized circular holes. The trained network was
able to adeptly predict through-hole size, location, and number from EIT conductivity
maps with good accuracy – likely better accuracy than human interpretation of EIT im-
ages. But this again utilised a very simple damage parameterisation (i.e. needing only to
predict hole number, radius, and in-plane coordinates). Real damages are obviously much
more complex than simple through-holes. As a final example of damage recovery, a recent
study looked at delamination shaping from EIT images in CNF-modified glass fibre/epoxy
laminates [288]. In this study, delaminations (i.e. inter-laminae separations) induced by
low-velocity impacts were parameterised as ellipses of unknown major and minor axes
and centred at unknown in-plane coordinates. A genetic algorithm was used to inversely
determine these parameters by minimising the l1-norm of the difference between experi-
mentally collected EIT boundary voltage data and boundary voltage data predicted by a
computational model of the damaged domain. Destructive analyses of the post-impacted
laminates revealed that the GA-predicted damage state much more closely matched the
actual delamination size and shape than the EIT conductivity images. This third ex-
ample of damage recovery is particularly noteworthy because it represents a much more
realistic set of conditions (i.e. recovering realistic impact damage in an actual structural
composite).

Summarily, this section has looked at smart or self-sensing materials from the perspec-
tive of structural inverse problems. Two noteworthy inverse problems were discussed –
the EIT inverse problem for the imaging of spatially distributed mechanical effects and
the strain/damage recovery problem. The former has been extensively researched in other
fields (e.g. [289]). The latter, however, is much more recent and has only been the subject
of a few precursory studies. Much work remains to be done regarding the inversion of
electrical data to obtain underlying mechanical effects.
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7 A look forward: machine learning and education

This paper has, to this point, evidenced the pervasiveness of inverse problems and method-
ologies used in the field of structural engineering. Yet, the following remains to question:
”what is guiding the future trajectory of inversion in structural engineering?” In this sec-
tion, we examine what we foresee as the two most influential future areas in addressing
this question: machine learning and education.

7.1 Machine learned inversion

Many areas of structural engineering rely heavily on applied mathematics and science –
from the integration of material models within finite element frameworks to experimental
measurement of structural response excitation. From a broad scientific perspective, there
are two paradigms to research, either (a) the Keplerian paradigm (data driven, obtaining
discoveries via data analysis) or (b) the Newtonian paradigm (first principles, discovery
through fundamental principles) [290]. Without question, structural engineering research
uses both principles.

Often, first principles approaches are manifested via partial differential equations
(PDEs) and their analytical or numerical solutions. However, both in research and prac-
tice, obtaining solutions to PDEs can be infeasible or intractable, for example owing to
computational demand, a dearth in available numerical regimes and/or the “curse of di-
mensionality” [291]. In such cases where engineering problems are governed by such PDEs,
solving a related inverse problem using a conventional methodology would also be a du-
bious task. When faced with this situation, we are most likely constrained to adopting a
Keplerian approach.

Unmistakably, machine learning has provided the science and engineering communities
with a powerful tool for data-driven analysis, prediction, assessment, and significantly
more. Structural engineering research has also greatly benefited from machine learning,
especially in the areas of performance assessment [292], SHM [10] and analysis of various
structural phenomena [293]. Yet, significantly less attention has been paid to the use of
machine learning for solving inverse problems in structural engineering outside of areas
such as SHM and NDE (as identified in §5).

Exemplifying this reality, structural design highly under utilises machine learning and
data science. Design is traditionally associated with an iterative nature, in which various
structural concepts are tested conceptually until a prevailing option is identified which
adheres to constraints initially identified. The nature of this iterative design process has
been understood in the past using both positivist, pragmatic and post-modernist episte-
mologies ranging from Simon’s “science of the artificial” [294], Schön’s “reflexive practice”
[295] and Buchanan’s “placements for contextualisation” [296] respectively. The com-
plexities involved in design from satisfying conflicting demands to exercising appropriate
judgements is hence often attributed as being an innate human skill [55]. As explained in
§3, the ill-posedness of structural design, and the need for an iterative solution approach,
can be adequately accounted for by the inverse problem perspective.

However, recent developments successfully solving inverse problems using data-driven
approaches suggest that such methodologies could also be incorporated within structural
design [24]. This challenges the notion that design is an exclusive human ability, a de-
velopment which mimics the success of self-driving cars through data-driven approaches
[297]. What is typically considered “intuition” or “engineering judgement” may in fact
be recalling “data-points”, committed to long-term memory through the process of expe-
rience, that are suitable solutions based on the unique set of constraints one is presented
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with [294]. This is exactly what data-driven approaches using machine learning achieve:
they generate mapping functions which correlate a set of inputs (a design situations with
a specific set of constraints) to associated outputs (viable structural solutions) by learning
from a given data set (experience).

We therefore believe that this inverse problem perspective might help evidence the need
for future research on the development of machine learning tools for structural design. It
is not uncommon for data-driven approaches to be dismissed on the grounds that they
simply constitute “black-boxes” which lack a scientific rational for their outputs. However,
this criticism might be completely unwarranted and may in fact highlight the dogmatic
concentration within academia on exclusively solving forward problems, which due to
their well-posed nature, lend themselves to engineering science thinking. The inverse
problem perspective indicates the need for a different type of approach, which machine
learning might provide. Indeed, research using neural networks and clustering have been
recently investigated to form a bridge, using computer aided design, structural equilibrium
constraints and human design criteria and objectives, to navigate the design space and
shortlist viable and fitting designs [298, 299]. Other researchers have also focused on
the use of machine-learning models to build suitable structural predictors for conceptual
design related to building massing [300].

The former developments are, in our view, only a starting point for the employment of
machine learned models used in solving inverse problems in structural engineering as a new
horizon of data-driven approaches emerge. Especially, for the cases involving intractable
forward problems, model reduction techniques have been promising [301, 12, 302, 303],
but these are either difficult to design by hand or are restricted by overly simplistic as-
sumptions. Here, data driven approaches are a powerful alternative to compensate for
modelling errors [188, 239, 304] or reducing computational cost of iterative optimisation
schemes by model approximations [31, 305]. Finally, we note that recent developments
in geometric learning extend deep networks on Euclidean meshes to general meshes, such
as finite elements, by a embedding them into graph structures essentially utilising the
underlying geometry [306, 307]. This opens the possibility to extend many data driven
approaches to complex structural problems.

7.2 Inverse methodology in structural engineering education

Over the last 100 years, engineering education has experienced a number of fundamental
shifts: a shift in focus away from design to engineering science in the 1960s, the rise of
outcome-based accreditation in the UK and USA in the 1990s, along with a re-emphasis
of teaching design through capstone projects in the 2000s [308]. There also is the con-
tinued tension between teaching graduates both the technical knowledge as well as the
interpersonal skills demanded from industry deemed necessary to become effective de-
signers [34]. To this day, there exists the debate on how to find the required balance
between knowledge-that and knowledge-how as identified in §3 [309]. For civil and struc-
tural engineering disciplines, we believe that some of these challenges might be addressed
by communicating the existence of inverse problems, their pervasive occurrences as shown
by the sections above, and teaching the various methods and techniques for solving such
problems.

The dominance of engineering science within university curricula today, which primar-
ily focuses on identifying and solving forward problems, might unintentionally generate
the wrong supposition that all problems in engineering are well-posed with idealised as-
sumptions. Without adequately addressing the existence of inverse-problems, and their
distinctively qualitative differences with forward problems, it is easy to mistakenly assume
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that, for example, structural design is the application of such “forward problems”. How-
ever, the idea that engineering is simply “putting theory intro practice” [55] or “applied
science” [310] has been strongly argued against by numerous engineers and philosophers
[54, 311, 312, 313]. The challenge which students face when dealing with real-world design
problems might be accounted for by the fact that during the majority of their engineering
education, they might lack a conceptual framework to adequately demarcate design from
analysis. Similarly, in order to engage with other promising fields of structural engineer-
ing, such as structural health monitoring, blast engineering and smart materials, educating
students on inverse problems is crucial.

Hence, a possible improvement for current civil and structural engineering curricula is
introducing students to the existence of forward and inverse problems, how they relate to
one another and provide examples where each type of problem arises and how we solve
them. As identified previously, this will also potentially require teaching students a host of
new skills, especially if data-driven models continue to be effective tools for solving inverse
problems, as is the case in structural health monitoring and increasingly likely in design.
More importantly, especially when taking into consideration the recent developments in
data science ranging from CNNs [314], transformers [315] and graph neural networks [316],
there exists a vast spectrum of knowledge and applications we may not even be aware of.

As a matter of fact, in terms of research, we are perhaps faced with a unique situation
in academia today. Although only time will tell, it could be argued that similar to how the
“invention” (or discovery) of calculus in the 18th century was instrumental in providing
us necessary tools for solving forward problems, resulting in material models and PDEs
which allow the creation of complex finite-element methods, so too might the rise of
machine-learning and data-science, which is only now starting to gain serious attention
in mathematics [290], allow a more rigorous treatment of solving inverse problems. By
realising the pervasiveness of inverse problems in structural engineering, but also the
fundamental differences with forward problems, there is potentially a vast, untouched and
exciting realm of research which awaits.

8 Conclusion

Structural engineering is not entirely the lost child of inverse problems; rather, the rela-
tionship needs to work on its communication skills. Indeed, this article has demonstrated
that numerous structural engineering sub-fields may be either fundamentally or partially
viewed as inverse problems. It was shown that this concept is well accepted in, for example
structural health monitoring; however, sub-fields such as structural design are not com-
monly (formally) defined as inverse problems. We argue that, by shifting this paradigm
in structural engineering academia and industry, we may collectively capitalise from the
rich methodologies and approaches already established in the inverse problems commu-
nity. This beneficial relationship between structural and inverse communities is expected
to pay exponential dividends as new tools, such as machine learned models, emerge and
develop – offering new opportunities for solving previously inaccessible, intractable, and/or
unforeseen structural challenges.
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Daniel Rolfes, Filippo Ubertini, Simon Laflamme, and Rafael Castro-Triguero. Dam-
age detection, localization and quantification in conductive smart concrete structures
using a resistor mesh model. Engineering Structures, 148:924–935, 2017.

[95] Zhi Zhou, Wanqiu Liu, Ying Huang, Huaping Wang, He Jianping, Minghua Huang,
and Ou Jinping. Optical fiber bragg grating sensor assembly for 3d strain monitoring
and its case study in highway pavement. Mechanical Systems and Signal Processing,
28:36–49, 2012.

[96] David Lecompte, ASHJD Smits, Sven Bossuyt, Hugo Sol, John Vantomme, Danny
Van Hemelrijck, and AM Habraken. Quality assessment of speckle patterns for
digital image correlation. Optics and lasers in Engineering, 44(11):1132–1145, 2006.

[97] Liliana Borcea. Electrical impedance tomography. Inverse problems, 18(6):R99,
2002.

[98] Ali Zare Hosseinzadeh, Gholamreza Ghodrati Amiri, and Ki-Young Koo.
Optimization-based method for structural damage localization and quantification
by means of static displacements computed by flexibility matrix. Engineering Opti-
mization, 48(4):543–561, 2016.

[99] Adnan Kefal and Erkan Oterkus. Displacement and stress monitoring of a panamax
containership using inverse finite element method. Ocean Engineering, 119:16–29,
2016.

34



[100] Masoud Sanayei, Ali Khaloo, Mustafa Gul, and F Necati Catbas. Automated finite
element model updating of a scale bridge model using measured static and modal
test data. Engineering Structures, 102:66–79, 2015.

[101] Bo Ni and Huajian Gao. A deep learning approach to the inverse problem of modulus
identification in elasticity. MRS Bulletin, 46(1):19–25, 2021.
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