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Neural Network Kalman Filtering for 3-D Object
Tracking From Linear Array Ultrasound Data
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Mikko J. Sillanpää , and Andreas Hauptmann , Member, IEEE

Abstract— Many interventional surgical procedures rely
on medical imaging to visualize and track instruments. Such
imaging methods not only need to be real time capable but
also provide accurate and robust positional information.
In ultrasound (US) applications, typically, only 2-D data
from a linear array are available, and as such, obtaining
accurate positional estimation in three dimensions is non-
trivial. In this work, we first train a neural network, using
realistic synthetic training data, to estimate the out-of-plane
offset of an object with the associated axial aberration in
the reconstructed US image. The obtained estimate is then
combined with a Kalman filtering approach that utilizes
positioning estimates obtained in previous time frames to
improve localization robustness and reduce the impact of
measurement noise. The accuracy of the proposed method
is evaluatedusing simulations,and its practical applicability
is demonstrated on experimental data obtained using a
novel optical US imaging setup. Accurate and robust posi-
tional information is provided in real time. Axial and lateral
coordinates for out-of-plane objects are estimated with a
mean error of 0.1 mm for simulated data and a mean error
of 0.2 mm for experimental data. The 3-D localization is
most accurate for elevational distances larger than 1 mm,
with a maximum distance of 6 mm considered for a 25-mm
aperture.

Index Terms— Kalman filtering, neural networks, object
tracking, optical ultrasound (OpUS), out-of-plane artifacts.
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I. INTRODUCTION

TRACKING and localization of point-like objects are
crucial to a large variety of medical applications in

ultrasound (US) imaging, such as tracking of microbubbles for
super-resolution US imaging [1], [2] or US-guided placement
of fiducial markers for radiotherapy [3]. In addition, tracking
of surgical tools (such as needles and catheters) is essential
during minimally invasive procedures [4]–[6], as when placed
inaccurately, these devices may cause trauma by damaging
tissue or deliver ineffective treatment to the wrong location [6],
[7]. As such, US is frequently used for guidance through
imaging, but accurate localization in a 3-D target domain
remains challenging. This is primarily caused by the nature
of data acquisition using linear arrays, which assumes that
all signals originate from within the image plane and, thus,
only a 2-D B-mode image of the image plane is formed.
We refer to this obtained 2-D image as the US image and
assume that it consists of the reconstructed point, or point-
like, source corresponding to the object we aim to track
accurately. However, if this point source is located out-of-
plane, it will primarily show as aberration in the reconstructed
image domain. In addition, one may misinterpret features,
such as a needle shaft as the tip [8]. Thus, the problem
to provide an accurate positional estimate in 3-D from only
2-D US images is consequently a notoriously difficult task
without any auxiliary information [9] and is a field of active
research [10], [11]. Early approach used speckle information
to estimate out-of-plane displacements [12], [13]. Another pos-
sibility for instrumented US tracking of needles was proposed
by Xia et al. [14], [15], who designed a custom-made imaging
probe consisting of a central array for conventional imaging
and two side arrays for 3-D tracking [15]. Alternatively, one
may approach the needle tracking problem in full 3-D to obtain
accurate positional estimates [16].

In this work, we propose an alternative, real-time capable,
method of performing 3-D tracking without the need for
custom-made probes and using a single set of measurements
per time step from a linear array. In the following, we assume
a point source model for the tracked object. For the estima-
tion of lateral and axial positions, we examine high-intensity
pixels in the reconstructed 2-D US image, similar to [16],
where tracking was performed in full 3-D. For the estimation
of the elevational direction or out-of-plane distance of the
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point source to the image plane, we use a machine learning
approach. In particular, significant markers are extracted from
the measured time series and a neural network is trained
using synthetic data modeled for a prototype optical ultra-
sound (OpUS) imaging setup [17] to predict out-of-plane
distance and associated aberration in the axial position in
the reconstructed 2-D US image. The markers used for the
neural network are summary statistics extracted from the
measurement data and correlated with the offset to establish
nonlinear mapping between the two.

In addition, we assume regularity in the temporal evolution
of the object location to improve robustness and reduce
uncertainty in the estimation compared to independently ana-
lyzing subsequent images. The regularity assumption mimics
conditions encountered in clinical practice, where the objects,
such as needle tips and microbubbles, are expected to follow
a smooth trajectory without rapid jumps or jitter during inser-
tions into soft tissue. This can be incorporated, while retaining
computational efficiency, by a Kalman filter [18], [19], which
is a flexible method for estimating the state (position, velocity,
and so on) of a dynamic system. It has been classically
utilized in engineering applications such as target tracking
and navigation but has also been extensively used in inverse
problems and medical imaging [15], [19]–[23]. The underlying
idea of Kalman filtering is to update the estimate of the state
at time step k + 1 each time new data become available as
opposed to smoothing, where the whole trajectory from time
step 1 to k is updated as well. It has the appealing property,
as opposed to estimating the full posterior of all states, that the
problem does not become intractable as the number of data
points increases.

We note that Kalman filtering has earlier been utilized for a
needle tracking problem in 3-D [16] as well as for microbubble
tracking in 2-D [24]. Takeshima et al. [25] tracked a wire tip
using the Kalman filter and perform an elevational position
estimation from geometric markers. In this work, we approach
the problem in 3-D with only a single set of measurements (per
time point) from a linear array and combine it with a neural
network in order to obtain reliable estimates on the elevation to
correct the axial position in the 2-D US image x̂ . We evaluate
the proposed method by tracking a point source for simulated
OpUS data and object trajectories with changing elevation.
Robustness is evaluated with respect to increased noise in
the measurement data and accuracy compared to positional
estimation using only the pixel with maximum intensity (MI)
in the OpUS image. Finally, we evaluate the method on
experimental OpUS measurements.

II. KALMAN FILTER FOR OBJECT TRACKING AND

OUT-OF-PLANE CORRECTION

A. Image Formation and Object Tracking

In the following, we specifically consider a custom setup
and simulation framework for a freehand optical US imaging
system, that is, the US signal generation is modeled as pulse-
echo imaging, where each source along the linear aperture
emits a pressure wave, which reflects off the point scatterer
and is detected by a single fiber-optic detector placed right

next to the imaging aperture [17]. We note that the tracking
framework here can be generalized to any linear US array,
where every source element also acts as a detector. Moreover,
we consider in the following the tracking problem in a 3-D
space, that is, we aim to determine the 3-D coordinate x of
the point source. Given the recorded radio frequency (RF) time
series p, the reconstruction of the 2-D in-plane US image x̂ is
performed using a basic delay-and-sum algorithm (equivalent
to dynamic focusing) [26].

When the location of the point source is in-plane, then
the reconstructed image x̂ can be directly used to estimate
the location x reliably. On the other hand, if x is out-of-
plane, then the 2-D reconstruction will lead to a distorted
image, in the sense that the reconstructed axial position is
located deeper in the target than the correct position [27]. The
aberration occurs because the time of flight is larger for objects
that are positioned out-of-plane due to the imaging geometry
(see Fig. 1). Thus, this axial aberration needs to be detected
and processed to simultaneously provide an estimate of the
elevational distance between the point target and the image
plane, and the corresponding coordinates projected onto the
image plane.

B. Object Tracking for In-Plane Objects

Most tracking applications primarily assume that the object
of interest is in-plane and features extracted from the recon-
structed image x̂ are good indicators of the actual position
x . Thus, the majority of tracking algorithms are based on
intensity values in the B-mode images for point marker track-
ing [28], [29] in combination with various image registration
approaches [30]–[32]. More recent developments make use
of deep learning techniques to estimate the coordinates of
objects directly from the measured time series p [33]–[35].
Nevertheless, there is no clear gold standard to perform object
tracking, as the particular approach depends heavily on the
application and practical need [9].

In this study, we are concentrating on single object tracking
and use the MI estimate for comparison and reference since
it provides highly efficient and accurate estimates under ideal
assumptions, i.e., high signal-to-noise ratio without any ele-
vation. Consequently, we will also design our tracking model
in the following by using the pixels in the US image with
the highest intensity for the estimation of axial and lateral
positions in the filtering process.

C. Kalman Filtering

Kalman filtering, a class of Bayesian filtering, is especially
effective in situations where the data stream is over time and
one must update the state given the new data and the history of
the system; as such, it is ideally suited to robustly perform the
object tracking considered in this study. Specifically, Kalman
filtering [18] consists of closed-form update formulas for a
linear Gaussian filtering problem, which will be discussed
next. The estimation of axial and lateral coordinates is similar
to the approaches suggested in [16] and [24], and we will then
continue to extend our model to incorporate elevation and a
correction of estimated axial coordinates.



ARJAS et al.: NEURAL NETWORK KALMAN FILTERING FOR 3-D OBJECT TRACKING 1693

Fig. 1. Illustration of the measurement geometry. If the point source object is located out-of-plane (right side), then the object appears distorted in
the reconstructed US image, i.e., too low by δ in the axial direction. This is why the axial position needs to be corrected.

1) Lateral and Axial Coordinates: The estimation of lateral
and axial coordinates and corresponding velocities xk =
(xlk xak vlk vak)

T at time step k is based on the locations of the
highest absolute intensity pixels in the image. We assume that
these locations are spread around the location of the object.
While the velocity of the object is not the main interest, it is
introduced as an auxiliary variable to help in predicting the
motion, as will be described in the following. We denote by
ylk ∈ R

n the n lateral and by yak ∈ R
n the n axial highest

intensity locations and let yk = (yT
lk yT

ak)
T. We then build a

model

yk = H xk + rk (1)

where the matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
...

...
...

...

1 0
...

...

0 1
...

...
...

...
...

...
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

2n×4 (2)

associates given high-intensity locations in yk with the actual
coordinates of the object in xk .

Furthermore, we assume that the noise in the observed
locations is normally distributed rk ∼ N (0, Rk), where

Rk =
(

s2
lk In×n 0

0 s2
ak In×n

)
(3)

with s2
lk being the sample variance of ylk and s2

ak the sample
variance of yak . In this way, uncertainty is naturally incor-
porated into the model as how spread out the high-intensity
locations are.

We model the motion of the object with a constant velocity
model [36]

xk = Axk−1 + Gck (4)

where ck ∼ N (0, diag(σ 2
l , σ 2

a )) is assumed to be a random
acceleration component and σ 2

l and σ 2
a are lateral and axial

process noise variances, respectively. The matrices A and G
are defined as [19]

A =

⎛
⎜⎜⎝

1 0 �t 0
0 1 0 �t
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (5)

G =

⎛
⎜⎜⎜⎜⎜⎝

1

2
�t2 0

0
1

2
�t2

�t 0
0 �t

⎞
⎟⎟⎟⎟⎟⎠

(6)

where �t is the time between subsequent observations.
The velocity and acceleration of the object at time step

k − 1 is used to give an accurate prediction of the position at
time step k. Writing (4) explicitly for the positional variables
only, we obtain

xlk = xl(k−1) +�tvl(k−1) + 1

2
�t2clk

xak = xa(k−1) +�tva(k−1) + 1

2
�t2cak . (7)

This means that we assume the position at time step k to be
close to the position at time step k − 1 plus the displacement
given by the time between subsequent observations, velocity,
and acceleration.

2) Out-of-Plane Offset and Axial Aberration: In case there is
an offset between the imaging plane and the object, we observe
aberration in the reconstructed axial coordinate due to the
geometry of the imaging problem (see Fig. 1). In this case,
location estimation based on only the high-intensity pixels
would result in a biased estimate of the axial coordinate.
Instead, we use information in the measurement data p to esti-
mate the offset and axial aberration and use the knowledge to
correct the estimate of the axial coordinate. To do this, we train
a neural network with training data obtained from an OpUS
simulator. Details on the neural network will be provided in
Section II-D1 and on the simulator in Section III-B. We note
that instead of a neural network, other sufficiently expressive
nonlinear prediction models could be used.
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Fig. 2. Flowchart for the NNK filtered tracking. We extract a mean value μ from the highest amplitude entries in the measured time series p and
use the highest intensity pixels in the 2-D US image. A previously trained (orange arrow) neural network estimator then uses the last state estimates
of lateral xlk and axial xak coordinates together with μ to estimate offset and axial aberration. The next state is then updated via Kalman filtering to
provide a robust positional estimation.

The filtering model is then extended to include the unfiltered
out-of-plane offset and axial aberration, denoted as yek and yδk ,
that are received as output from the neural network. We can
then define y∗k = (yT

k yek yδk)
T. Filtered out-of-plane offset and

axial aberration and their velocities, denoted as xek , δk , vek , and
vδk are included in the state vector x∗k = (xT

k xek δk vek vδk)
T,

The extended model is

y∗k = H∗x∗k + r∗k
x∗k = A∗x∗k−1 + G∗c∗k (8)

where r∗k ∼ N (0, R∗k), c∗k ∼ N (0, diag(σ 2
l , σ 2

a , σ 2
e , σ 2

δ ))

H∗ =
(

H 0
0 H̃

)
(9)

with

H̃ =
(

1 0 0 0
0 1 0 0

)
(10)

A∗ =
(

A 0
0 A

)
(11)

G∗ =
(

G 0
0 G

)
(12)

and σ 2
e and σ 2

δ are the process noise variances of the out-
of-plane offset and axial aberration components, respectively.
Finally, we let

R∗k =
(

Rk 0
0 R̃k

)
(13)

where

R̃k = max
(
s2

lk , s2
ak

)
I2×2. (14)

3) State Estimation: As stated earlier, a major benefit arising
from linearity and Gaussianity of the filtering models are the
closed-form update formulas for mean mk and covariance
Pk of the state. At k = 0, we assume x∗0 ∼ N (m0, P0),
where m0 = 0 and P0 = 15I to serve as an uninformative
prior. Note that the mean mk corresponds to the estimated
coordinates for x∗k and Pk is the corresponding covariance
matrix. At every round, the prior predictions for mean and
covariance are updated recursively as

mpr
k = A∗mk−1

Ppr
k = A∗Pk−1 A∗T + Q∗ (15)

where Q∗ = G∗diag(σ 2
l , σ 2

a , σ 2
e , σ 2

δ )G∗T. We then evaluate
the neural network as described in Section II-D to provide the
estimates of offset and axial aberration in y∗k , and then, the
Kalman update can be performed by

uk = y∗k − H∗mpr
k , (Prediction residual)

Sk = H∗Ppr
k H∗T + R∗k, (Measurement covariance update)

K k = Ppr
k H∗T S−1

k , (Gain update)

mk = mpr
k + K k uk, (State update)

Pk = Ppr
k − K k Sk K T

k , (State covariance update). (16)

Estimates of all coordinates are then given by mk . Their
variances can be found in the diagonal of Pk and could be
used for uncertainty quantification of the Kalman updates.
The estimated axial aberration is then subtracted from the
estimated axial coordinate to yield an estimate for the actual
axial coordinate as

m∗ak = mak − mδk . (17)
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Fig. 3. RF time series (left) showing the decay in amplitude as the distance from imaging plane increases. The decay is also shown on the right for
different axial depths. In general, the rate of decay decreases with increased depth. The lateral coordinate xl was set to 0 in these tests.

D. Application to Object Tracking

We apply the Kalman filtering method to the task of
object tracking modeled from OpUS image reconstructions
and measurement data. After generating suitable training data
and training the neural network, tracking can be performed as
outlined in the following. A diagram of the workflow is shown
in Fig. 2.

1) Neural Network (Training Data and Architecture): We use
an OpUS simulator [37], [38] to generate training data for the
neural network. First, we define a uniform 20 × 20 × 20 grid
of coordinates. The grid has bounds ±12 mm in the lateral
direction, 0.5–14.5 mm in the axial direction, and ±10 mm
in the elevational direction. Two additional grid points were
placed in-plane (zero in elevational direction). In each grid
point, we simulate measurement data with coordinate values
equal to the grid point.

To obtain a marker for the offset estimation, we note that US
source elements typically emit near-omnidirectional pressure
fields within the image plane but are usually designed to
emit highly directional fields in the out-of-plane direction.
This is achieved through a combination of eccentric element
geometries and acoustic lenses [27]. As a result, the amplitude
of pulse-echo signals from point objects depends strongly on
the elevational (out-of-plane) position and generally reduces
with increasing elevational offset. The shape of the decay also
depends on the position of the object. In short, the out-of-
plane amplitude decay decreases as the axial depth increases,
as shown in Fig. 3. This is why both the lateral and axial
coordinates are used as inputs for the neural network. Thus,
the pulse-echo signal strength across the aperture can be used
as an effective marker of the elevational position. To exploit
this, we use the RF time series p to compute the mean
absolute value μ of those time series samples belonging to
either highest or lowest 1% of a Gaussian defined by the mean
and variance of p. This way most of the purely noisy part of
the data is ignored. We also compute the distance between
the mean of apparent (reconstructed) axial coordinates of
n = 15 highest intensity pixels and the real axial coordinate

used to simulate the data. This distance reflects the axial
aberration that needs to be corrected for.

A neural network �θ with parameters θ is then trained to
map lateral and axial coordinates, and mean absolute value
of high amplitude entries in measured time series, denoted
as u = (xa xl μ)T, to a prediction of unfiltered out-of-plane
offset and axial aberration w = (ye yδ)

T. Since the simulator
output is almost symmetric with positive and negative offsets,
we train the network with absolute offset values ≥ 0. This
means that we can only estimate the magnitude of the offset,
not the direction. The network chosen is a standard multilayer
perceptron [39] with two hidden layers and 20 nodes in each
layer. Each hidden layer has a sigmoid activation function,
whereas for the output layer, the activation function is linear.
The network is trained by finding a set of parameters θ∗ such
that the mean squared error between the neural network output
and the ground truth is minimized, i.e.,

θ∗ = argmin
θ

M∑
i=1

‖�θ(ui)− wi‖2
2 (18)

where M is the size and i is an index over the train-
ing data. We used the Levenberg–Marquardt algorithm,
Marquardt [40] and Levenberg [41], to train the neural
network. The dampening parameter was set to the default
value of 10−3. The optimization stopped when the validation
performance did not improve in six epochs in a row or the
relative norm of the gradient of the minimized function was
smaller than 10−7.

2) Tracking: We track the point source from a sequence of
optical US image reconstructions. At k = 0, we set m0 = 0
and P0 = 15I . We find the coordinates of n = 15 highest
intensity pixels and use the neural network to estimate the
unfiltered out-of-plane offset and axial aberration. Since the
neural network input contains the lateral and axial positions
of the point source, we use the estimate from the previous
time step. If the motion of the object is somewhat regular,
this does not have a big impact on the estimation accuracy.
The coordinate estimates are then updated with Kalman filter
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update formulas [see (16)]. An estimate of the true axial
coordinate of the object is then obtained by subtracting the
axial aberration estimate from the apparent axial coordinate
obtained directly from the 2-D US image. An illustration of
the full tracking workflow is shown in Fig. 2 and summarized
as pseudocode in Algorithm 1.

Algorithm 1 NNK Filtered Tracking
1: Initialisations: m0 = 0, P0 = 15I
2: function NNK(Inputs: process noise variances σ 2

l , σ 2
a ,

σ 2
e and σ 2

δ )
3: k ← 1
4: while new data acquired do
5: Update mean mpr

k and covariance Ppr
k by Eq. (15)

6: Compute marker μk and high intensity pixel locations
ylk and yak

7: u ← (ml(k−1), m∗a(k−1), μk)
8: (yek, yδk) ← �θ(u)
9: Perform Kalman update with (16)

10: Perform axial aberration correction with (17)
11: Display image overlaid with coordinate estimates
12: k ← k + 1
13: end while
14: end function

III. OPTICAL US AND EXPERIMENTS

A. Experimental Setup

The experimental validation of the method was performed
using a custom OpUS imaging system comprising a handheld
imaging probe. We have chosen the OpUS imaging system for
this study due to three main advantages: it offers direct access
to the RF data, it was previously accurately characterized in-
house, and the system can be accurately and highly efficiently
modeled numerically—thus making it an ideal fit for this study.
This system, which was described in full in [17], uses scanning
optics to couple excitation light sequentially into the proximal
ends of 64 optical fibers arranged in a linear array. This
light is delivered to an optically absorbing coating deposited
at the distal ends, where it is converted into divergent US
waves via the photoacoustic effect [42]. Thus, an OpUS source
aperture is rapidly scanned to enable video-rate and real-time
imaging in a 2-D imaging plane. Backscattered US waves are
detected using a single fiber-optic US detector comprising an
optically resonant plano-concave Fabry–Pérot cavity [43], with
an lateral extent of 25 mm.

B. Simulated Data

A highly efficient and accurate simulator of the OpUS
imaging setup, as previously described in [37] and [38] and
based on the FOCUS US simulator [44], [45], was used to
evaluate the performance of our method with synthetic data
examples produced with the OpUS simulator. In total, four
synthetic data sets were generated to test different properties of
the tracking method. Noise amplitude was computed such that
SNR for in-plane locations was 6.5 dB and decreasing SNR
with elevational distance, due to decreasing signal strength.
The first data set (Experiment 1) comprises 101 time points

and a smooth, curved object trajectory with linear motion
at constant velocity in the elevational direction to test the
overall performance [see Fig. 4]. We remind that our proposed
method extends the MI estimation with Kalman filtering and
incorporation of elevational offset estimation and axial aber-
ration correction. Thus, Experiment 1 shows the importance
of the aberration correction. We then examine other factors,
such as noise in the second data set (Experiment 2), which
is the same as the first one, but with tenfold noise in every
tenth measured time series to investigate the robustness of
the method. The third data set (Experiment 3) follows also
the same axial–lateral trajectory as Experiment 1, but the
object is positioned in-plane for all frames. The fourth data
set (Experiment 4) has stationary lateral and axial coordinates
with a constant change in elevation and is meant to test the
accuracy of offset estimation.

1) Reference Methods for Comparison: In addition to the
proposed combination of neural network tracking with Kalman
filtering [neural network Kalman (NNK)], we test two other
reduced models: plain Gaussian random walk (NNK-RW) and
independent subsequent states (NNK-I). Mathematically, they
differ with respect to the dynamic model: NNK-RW assumes
that xk = xk−1+ck and NNK-I that xk = ck [compared to (4)].
We compared our method to MI tracking, which estimates the
object location as the pixel with the highest intensity and thus
only outputs a 2-D location. To evaluate the performance of
all considered methods, we computed the mean 2-D Euclidean
distance from the estimated axial and lateral coordinates to the
ground truth using synthetic data. We additionally evaluate the
accuracy of the 3-D positional estimate with Experiment 4.
Finally, we examined the localization accuracy of NNK as a
function of depth (axial coordinate) and out-of-plane offset
with an axial line trajectory simulated with different values
for out-of-plane offsets. This evaluation was done using the
3-D Euclidean distance.

C. Experimental Data

To test the out-of-plane tracking abilities of the method,
we performed one physical experiment closely matching sim-
ulated Experiment 4 and one to test accuracy when moving
further out-of-plane. In the first experiment, the tip of a
metal pushpin (tip diameter: 50 μm) was used to emulate a
point object and was submerged in water as a homogeneous
background medium. This pin was placed centrally within
the imaging aperture at an axial distance of 7.5 mm and
was attached to a manual translation stage (PT1/M, Thorlabs,
Bergkirchen, Germany) to allow for controlled motion orthog-
onal to the image plane (i.e., “out-of-plane”) and provide
ground-truth positions for quantitative evaluation. The tip of
this pin was placed at out-of-plane positions ranging between
−3 and +5 mm at a regular step size of 100 μm, and at each
position, a 2-D OpUS image was acquired. For the second
physical experiment, the out-of-plane and lateral positions
were varied simultaneously to mimic a nonorthogonal drift
of the object. The object was initially located centrally in the
image at an axial depth of 7.5 mm and moved in increments
of 100 μm (lateral) and 200 μm (out-of-plane) to a total out-
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Fig. 4. Tracking for synthetic experiment 2 with MI and NNK. The axial coordinate is overestimated with MI due to the absence of axial aberration
correction and the location is severely misestimated in some frames because of increased noise.

of-plane position of 10 mm. The SNR for the experimental
data is estimated to be around 4 dB.

D. Tuning Parameter Selection

The tracking algorithm requires the selection of four process
noise variance parameters that can be used to fine-tune the
process. Values that are too low (<(10−4 mm)2) may cause
the estimated trajectory to be too restricted in case of rapid
changes in the position or velocity of the object. With ideal
data (high SNR), values that are too high have little effect,
but with noisier data robustness suffers. This transition starts
to take place at around the value of (0.2 mm)2. Thus, the
parameters were chosen empirically as (0.005 mm)2 to allow
enough flexibility to recover from sudden changes in the
position and velocity but at the same time provide robustness
against noise.

IV. RESULTS

A. Results on Simulated Data

Table I shows the errors for the four tracking experiments
and different varying methods. The proposed NNK methods
perform clearly better than MI with data where the tracked
object is out-of-plane, due to the correction of the axial
aberration caused by out-of-plane offset: the localization error
for all NNK methods is 0.13 mm, while for MI, it is five-
fold. For occasionally noisier data filtering-based NNK and
NNK-RW that retain their performance and clearly outperform
NNK-I and MI that do not assume dependence between
subsequent positions, this indicates that a filtering approach is
necessary to provide robustness. This benefit of filtering and
axial aberration correction is clearly visible in Fig. 4, where
MI overestimates the axial coordinate and, for some noisy
images, the estimate jumps off the trajectory (green spikes).
Nevertheless, if we consider no out-of-plane offset without
additional noise, all methods perform comparably well with
a localization error of around 0.11 mm. In terms of worst
case performance, NNK performs the best with maximum
error less than three times the mean error in every experiment.
In Experiment 2 with increased noise, this ratio increases to
almost five with NNK-RW and over 10 with NNK-I and MI.

Fig. 5. 3-D localization error (mm) of NNK as a function of elevational
position and axial depth for lateral position at 0 mm.

Videos of tracking results with NNK for Experiments 1 and
4 are presented in Supplementary Videos 1 and 2.

Fig. 5 shows how the 3-D error depends on depth and out-
of-plane offset for lateral position at 0 mm. Interestingly, the
error is largest (∼1.6 mm) when the offset is small and the
depth is large. For bigger offsets, the error gets smaller. This
indicates that there are no strong enough markers in the data
to reliably estimate all three coordinates when the out-of-
plane offset is small. However, the reliability increases with
higher out-of-plane offsets. The relatively poor performance
at shallow depths and large elevational offset (bottom right
of Fig. 5) is caused by the directivity of the US sources
and a large propagation distance, which result in poor SNR
and hence poor amplitude estimates. The same pattern was
obtained for different lateral positions (data not shown), with
minor fluctuations in the stable region and degradation for
the extreme points close to the imaging boundaries. We also
note that even though the out-of-plane offset estimation is not
correct for all instances, the estimated axial aberration and
filtering approach still provides accurate results, as can be seen
in Fig. 6: lateral/axial trajectory is very close to the ground
truth.
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TABLE I
2-D ERRORS (AXIAL/LATERAL) AS MEAN DISTANCE (STANDARD DEVIATION, MAXIMUM DISTANCE) IN MILLIMETERS WITH RESPECT TO GROUND

TRUTH OF DIFFERENT TRACKING SCHEMES FOR THE SYNTHETIC DATA EXPERIMENTS: PROPOSED METHOD (NNK), THE TWO REDUCED

MODELS USING GAUSSIAN RANDOM WALK (NNK-RW) AND INDEPENDENT SUBSEQUENT STATES (NNK-I), AND THE REFERENCE METHOD (MI)

Fig. 6. Tracking for synthetic experiment 4. Top left: tracked location (green dot) at time step 40 (out-of-plane distance ∼1 mm). Top right: tracked
location at the last time step (out-of-plane distance 5 mm). Bottom left: 2-D and 3-D error (Euclidean distance) from the ground truth. Bottom right:
out-of-plane offset (elevational distance) and axial aberration over time.

B. Results on Experimental Data

Before we could apply NNK for tracking, the experimental
data required normalization to match the amplitude (in arbi-
trary units) of synthetic data. While the experimental data
are clearly noisier than synthetic data, the tracking method
performs reasonably well. The axial aberration correction
works and the out-of-plane offset largely follows the expected
trajectory (see Figs. 7 and 8). However, when going farther
than 6 mm away from the imaging plane in the second
experiment, the algorithm breaks down and the localization
error increases rapidly. The axial/lateral localization error is
mostly below 0.3 mm and with a mean of around 0.2 mm
for the first experimental dataset. For the second dataset, the
same holds for frames 1–35, after which the error starts to
increase. In the first experimental dataset, most of the 3-D
errors originate from the elevational component. This effect
is not as pronounced in the second dataset. We note that
in the first dataset, the estimation accuracy is worse for the
first part with negative elevational distance. This indicates
that the imaging probe suffers from a source of asymmetry
(e.g., acoustic shadowing by an edge or unexpected source or

receiver directivity) that has not been accurately accounted for
in the numerical model. This effect can also be observed in the
video of this tracking experiment in Supplementary Video 3.

C. Computation Times

Performing one iteration of tracking took on average
298 ms. The time was split as follows: reconstructing the
image (269 ms), finding high-intensity pixels (21 ms), neural
network prediction (6.6 ms), and Kalman filtering (0.43 ms),
and displaying the image (83 ms). Hence, reconstructing the
image is clearly the most time-consuming task and the NNK
framework only adds a small computational overhead.

Preliminary tasks include generating training data and train-
ing the neural network. Training data with 8800 rows were
generated in about 1 h. Training the neural network took on
average only 20 s with a median of 17 s (over ten training
attempts). Generating the training data and training the neural
network has to be done only once, which means that tracking
is essentially performed in real time. Computations were
performed on a workstation with AMD Ryzen Threadripper
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Fig. 7. Tracking for experimental dataset 1 matched to synthetic experiment 4. Top left: tracked location (green dot) at time step 40 (out-of-plane
distance ∼1 mm). Top right: tracked location at the last time step (out-of-plane distance 5 mm). Bottom left: 2-D and 3-D error (Euclidean distance)
from the ground truth and (bottom right) out-of-plane offset (elevational distance) and axial image aberration over time.

2950X processor and 32-GB RAM. The codes for NNK are
written in MATLAB, while the OpUS simulator uses routines
compiled from C++ for CPU.

V. DISCUSSION

A. Discussion of Markers

Our experiments show that the magnitude of the simulated
measurement data coupled with axial and lateral position is
correlated with the out-of-plane offset and an axial posi-
tional aberration, as shown in Fig. 3. This correlation can be
exploited with machine learning to find a nonlinear relation-
ship between these quantities. We also found that this corre-
lation holds with experimental data after data normalization.
Nevertheless, the tracking with experimental data is less stable
and shows reduced accuracy. This can be partly attributed to
reduced SNR in the measurement data as well as deviations
from the ideal assumptions in the simulation, but the Kalman
filtering offers a framework to partly mitigate these negative
effects and is still able to provide a stable estimation of the
axial/lateral coordinate.

In this work, we have used an OpUS simulator and
computed all markers, offset, and axial aberration, from the
simulated data. We note that under the assumption of a
homogenous medium, we can alternatively calculate the axial
aberration analytically using the point-spread function of the
imaging system. Nevertheless, we have observed in conducted
experiments that an analytic calculation can help for small
distances in the simulated data but will lead to decreased
accuracy for the experimental datasets. Thus, computing the

axial aberration from the reconstructed US images for training
seems to provide more generalizable markers for the estima-
tion process. Furthermore, this fully simulated framework can
be extended to heterogeneous media.

B. Offset Accuracy and Range

The quantitative analysis shows that tracking accuracy is
worse for small offsets and larger depths. Most of this error
seems to be caused by the out-of-plane offset estimation,
while axial and lateral components are tracked well. This
indicates that even though the offset might be incorrectly
estimated, the proposed axial aberration correction still works.
We attribute the difficulty of estimating small elevations to the
shallow slope of the out-of-plane amplitude decay for larger
axial depths, as shown in Fig. 3. This decrease in accuracy
is also seen in the error matrix in Fig. 5 and worsens with
increasing axial distance. Thus, it is important to provide both
offset and axial aberration, to provide accurate tracking results
within the Kalman filtering. For the simulated data, this effect
shows symmetrically at roughly out-of-plane distance under
1 mm. For the experimental data, the threshold distance is
similar, but an asymmetric behavior can be observed, where
positive elevational distance is underestimated and negative
overestimated, as shown in Fig. 7. This indicates that the
purely simulated framework can in principle be transferred to
the experimental case, but small asymmetries in the imaging
probe would need to be investigated and accounted for to
further improve the results.
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Fig. 8. Tracking for experimental dataset 2. Top left: tracked location (green dot) at time step 1 (out-of-plane distance 0 mm). Top middle: tracked
location at time step 20 (out-of-plane distance ∼4 mm). Top right: tracked location at the last time step (out-of-plane distance 10 mm). Bottom left:
2-D and 3-D error (Euclidean distance) from the ground truth and (bottom right) out-of-plane offset (elevational distance) and axial image aberration
over time.

The imaging system in this work uses unfocussed, weakly
directional circular optical US sources that insonify a wide
elevational range. Consequently, out-of-plane tracking can be
performed over a large elevational range limited by the SNR
of the B-scan: in this work, up to 6 mm for positive elevational
distance. For larger out-of-plane offsets, the RF data SNR is
insufficient to reliably detect the pulse-echo signal. However,
for imaging probes comprising directional sources or in the
presence of an acoustic lens, this range could be different.

C. Limitations and Clinical Applicability

In this study, we show that one can successfully use
the correlation between out-of-plane amplitude decay and
axial/lateral positions to estimate 3-D locations from linear
array data. Nevertheless, this correlation was observed in
a simplified simulated and experimental setting assuming
homogeneous media, i.e., a water bath in the experimental
setup. In order to move toward clinically realistic scenarios,
we need to consider various deviations from the ideal case. In
the following, we discuss limitations and extensions needed
for clinical applicability.

1) Speckle: The tracking presented is based on MI pixels,
and as such, speckle of low-to-moderate intensity (compared to
the intensity of the image of the object, for instance in the case
of a highly echogenic needle tip) is not expected to interfere
with the estimation procedure. However, strong speckle could
result in tracking errors if only the amplitude is used as marker
μ. In this case, the NN would likely need to be adapted to
not only extract amplitude information but also its variation

across the imaging aperture—as this spatial variation for the
actual object would differ from that of speckle signal.

2) Inhomogeneous Media: In this work, we have presented
results for homogeneous media. For an application to inho-
mogeneous media with spatially varying speed of sound,
the NN needs to be trained differently. Here, approximate
synthetic training data could, for instance, be generated using
ensemble-mean speed of sound maps observed over a group
of patients and simulated with advanced methods such as the
k-Wave toolbox [46]. In addition, acoustical attenuation would
affect the extracted parameter μ and hence complicate accurate
out-of-plane tracking. For applications to actual tissue, this
attenuation should be included in the model used to train
the NN.

3) Object Geometry: The results presented in this work were
obtained for point-like objects, such as clinically encountered
in the form of microbubbles, fiducial markers, brachytherapy
seeds, and radio-opaque markers on surgical instruments. In
order to extend the method to finite-sized objects, their US
response needs to be accurately modeled. Conceptually, the
method applies to finite-sized spherically symmetric objects,
such as large needle tips or spherical implants. However,
more complicated object geometries, such as long needles or
asymmetric beads, are complicated due to nonlinearities aris-
ing from high echogenicity and ambiguities in differentiating
between needle tips and shafts or different object orientations.
Such objects would require further refinement in the NN
markers and the underlying acoustical model to make accurate
predictions.
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4) Tracking Range and Accuracy: In the experimental results
presented here, an out-of-plane tracking range of up to ±6 mm
was demonstrated and was limited by SNR. This range could
be further extended, provided that the imaging probe emits a
sufficiently diverging field in the elevational direction and SNR
is improved, for instance using coded excitation schemes. The
optical US imaging system considered here does not apply
acoustic focusing in the elevational direction and hence is
ideally suited to tracking across a wide out-of-plane range.
The achieved range of ±6 mm is clinically highly relevant,
as correcting object placement over larger distances is typically
not possible without removal and reentry of a surgical tool. For
clinical imaging systems, which typically apply elevational
focusing, geometrical distortion and signal amplitude decay
resulting from out-of-plane offsets will still occur, and the pro-
posed method can still be applied, provided that it is retrained.
However, the out-of-plane tracking range and accuracy will
depend on the tightness of the elevational focusing and hence
will vary with both the F-number of the elevational focusing
lens and the axial position of the object relative to the focal
distance.

5) Experimental Setup: Here, we used a prototype opti-
cal US imaging setup to perform experimental valida-
tion measurements. While these were reasonably successful
(cf. Figs. 7 and 8) due to the availability of a highly accurate
and efficient numerical model, the developmental nature of this
system limited its practicality. Slow fluctuations were observed
in the efficiency of the optical US sources and the sensitivity
of the detector, which resulted in unforeseen variations in the
US amplitudes. As the NN estimation requires the amplitude
to be accurately known, these fluctuations limited the range
of object trajectories to those that could be traversed quickly.
This also resulted in slight differences between simulated and
experimental data. Nevertheless, the estimation network gener-
alized well to the experimental data, and the filtering approach
further stabilized the estimation process. However, in principle,
any US imaging system that grants access to RF data could be
used, even those generating focused transmissions—although
the NN would need to be retrained for each considered setup
and tracking accuracy and range will vary.

D. Extensions

The presented framework can be extended to tracking mul-
tiple point sources. In that case, a data association task would
have to be solved [19], [47]. This means determining which
pixels belong to which target. Furthermore, this would also
require a more complicated setup for training data generation
and extraction of markers from the measured time series.

Another interesting avenue to pursue would be the extension
to needle tracking (as opposed to point object tracking) where
the shaft can be mistaken for the tip, which would require
shape detection instead of simple tracking. Alternatively, one
can overcome the shaft problem by adjusting our framework to
data obtained with an active listening needle [8] that relies on
the reception of US pulses by a fiber-optic hydrophone (FOH)
integrated into the needle.

Finally, due to the limitations mentioned in Section V-C,
it might be promising to consider the full RF time series as

input to a convolutional neural network that is also capable of
extracting geometric markers from the data. This information
can be still paired with manually extracted markers, such as
amplitude, to improve the tracking accuracy and robustness
for future applications.

VI. CONCLUSION

This work proposes a neural network and Kalman filtering
approach to perform accurate and robust object tracking in
3-D from linear array data. The essential step is that a neural
network estimates the third dimension and its impact on the
2-D US image, in form of aberration in the axial coordinate.
Then Kalman filtering is performed for all coordinates to
provide a robust estimate with respect to noise. We have shown
that the framework can provide high accuracy in estimating
axial and lateral coordinates for objects that are not in-plane
as well as the corresponding elevational distance. If the point
source is too close to the imaging plane, it remains difficult
to provide an accurate estimate on the elevational distance,
but the proposed NNK framework is still capable to provide
a robust and accurate estimate on the lateral/axial coordinate.
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