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An Educated Warm Start For Deep Image
Prior-Based Micro CT Reconstruction

Riccardo Barbano†, Johannes Leuschner†, Maximilian Schmidt, Alexander Denker, Andreas Hauptmann,
Peter Maass and Bangti Jin

Abstract—Deep image prior (DIP) was recently introduced
as an effective unsupervised approach for image restoration
tasks. DIP represents the image to be recovered as the out-
put of a deep convolutional neural network, and learns the
network’s parameters such that the model output matches
the corrupted observation. Despite its impressive reconstructive
properties, the approach is slow when compared to supervisedly
learned, or traditional reconstruction techniques. To address
the computational challenge, we bestow DIP with a two-stage
learning paradigm: (i) perform a supervised pretraining of the
network on a simulated dataset; (ii) fine-tune the network’s
parameters to adapt to the target reconstruction task. We
provide a thorough empirical analysis to shed insights into the
impacts of pretraining in the context of image reconstruction. We
showcase that pretraining considerably speeds up and stabilizes
the subsequent reconstruction task from real-measured 2D and
3D micro computed tomography data of biological specimens.
The code and additional experimental materials are available at
educateddip.github.io/docs.educated_deep_image_prior/.

I. INTRODUCTION

Inverse problems in imaging center around recovering an
unknown image x ∈ Rn of interest from the noisy measure-
ment yδ = Ax+ η, where yδ ∈ Rm is the noisy measurement
data, A the linear forward operator, and η an i.i.d. noise
(e.g. Gaussian noise η ∼ N (0, σ2I)). Due to the inherent
ill-posedness of the problem, suitable regularization is crucial
and is key for a successful recovery of x [1]–[3].

Over the last years, deep learning methods have been
successfully applied to solve all types of imaging problems,
with supervised training being the dominant paradigm [4], [5].
That means, a deep neural network is trained to restore the
image from noisy data using a set of paired training data. A
large number of such high-quality paired training data may
be needed [6]. Except simulated data, these are usually not
obtainable, or too expensive to collect. Further challenges arise
from the distributional shifts of the test data (e.g. change of
image class, noise level or forward operator at test time).
Ideally, the trained model should be robust to these changes,
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and transfer its reconstructive properties from one domain
to another using as little additional data as possible [7]–[9].
Unfortunately, this is often not the case.

An effective solution to these challenges is deep image prior
(DIP) [10], which represents a new approach to regularize
image restoration. Rather than taking the supervised route, DIP
learns to reconstruct without reference data, by assuming that
a natural image can be well represented by a convolutional
neural network (CNN). This is achieved by training the
network’s parameters to generate an image that fits the data yδ
(often equipped with suitable early stopping). The method is
very attractive for imaging tasks with scarce training data. DIP
has received enormous attention in the imaging community,
and delivered state-of-the-art performance for unsupervised
methods on a number of imaging tasks, including computed to-
mography (CT) [6], [11], magnetic resonance imaging (MRI)
[12], positron emission tomography (PET) [13]–[15] and com-
pressive ptychography [16], closely matching its supervised
counterparts.

While DIP has been shown to be effective, it is not free from
drawbacks. Notably, it requires “fresh training” each time it
is deployed, which leads to high computational overhead and
demanding VRAM requirements at test time when compared
to supervised counterparts [4], [17], [18]; the latter ones only
require one feed-forward pass through the network and thus
computationally cheap. This inefficiency is considerably exac-
erbated by the fact that DIP requires a lengthy (and unstable)
optimization process [6], [19]. For example, reconstructing a
single image of resolution (501 px)2 requires approximately
30-50k iterations to reach the early-stopping point, which
translates to 3-5 h of computing-time on NVIDIA GeForce
RTX 2080Ti/1080Ti. It gets even worse in the 3D setting:
a (167 px)3 reconstruction takes approximately one day on
NVIDIA GeForce RTX 3090 using mixed precision! This
hinders its applicability to solve imaging inverse problems,
especially when fast reconstruction is critical. These observa-
tions motivate us to explore the following:

Can DIP benefit from pretraining for accelerating subse-
quent reconstructive tasks? If so, can we easily construct
an informative dataset to warm-start DIP? How do induc-
tive biases of pretraining impact the reconstructive task?
Pretraining is one well-established paradigm to address data

scarcity in supervised learning [20], [21]. Models are often
pretrained using large-scale datasets, and fine-tuned on target
tasks that have less training data [22]. However, the idea
of pretraining has not received the attention it deserves for
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DIP, and presents a new challenge. The challenge is to learn
(via supervised pretraining) feature representations that are
transferable and generalizable to subsequent fine-tuning.

To overcome the computational challenge, we systemati-
cally explore a supervised pretraining strategy for accelerating
DIP-based µCT reconstruction, and introduce an effective two-
stage learning paradigm. Our contributions can be summa-
rized as follows. We develop an effective strategy to greatly
accelerate the convergence of DIP for µCT reconstruction,
by recasting DIP within the “supervised pretraining + un-
supervised fine-tuning” paradigm. We show that carefully
designed pretraining with simulated data from a synthetic
image class can considerably speed up and stabilize DIP-
based µCT reconstruction with real-measured data, including
computationally demanding 3D tasks, for which we develop
a specialized U-Net architecture to perform DIP-based µCT
reconstruction under the constraint of 24 GB VRAM. To the
best of our knowledge, this is the first successful 3D µCT
reconstruction using DIP. The experiment results show that
despite its simplicity, it can be highly effective. Further, we
conduct a thorough experimental study to shed insights into
the mechanism of knowledge transfer between the supervised
pretraining and unsupervised fine-tuning stages, including a
novel linear analysis of pretraining, which exhibits sparsity-
promoting in the parameters’ bases.

The paper is organized as follows. We describe the standard
DIP in Section II and related works in Section III. In Section
IV, we present the two-stage framework for DIP. We give the
experimental details and results in Sections V and VI, and
analyze the impact of pretraining in Section VII.

II. DEEP IMAGE PRIOR

The idea of DIP [10] is to find a minimizer of the fidelity
‖Ax− yδ‖2, by representing the unknown x as the output of
a CNN, x = ϕθ(z), where z ∈ Rn is a fixed random vector
(often pixel-wise i.i.d. samples of random noise), and θ ∈ Rp
denotes the network’s parameters to be learned. A U-Net [23]
like architecture is commonly used for the network. DIP solves

θ∗ ∈ argmin
θ
‖Aϕθ(z)− yδ‖2,

and presents ϕθ∗(z) as the reconstruction. Note that the train-
ing of the network parameters θ coincides with the recovery
process, and has to be repeated for each measurement. The
procedure is unsupervised, and guided by the principle of
matching the forward projected network output Aϕθ(z) to the
measurement data yδ . Due to the overparameterization of the
neural networks used in DIP, a direct minimization of the loss
can suffer from overfitting. DIP often uses early-stopping to
deliver a satisfactory reconstruction: the update of θ is stopped
early to avoid overfitting to the noise [10]. This has motivated
developing automated rules for early stopping [24], [25].

III. RELATED WORKS

a) Deep Image Prior: Since the first proposal in [10],
there have been several important developments on DIP.
Heckel et al. [26] propose deep decoder, using under-
parameterized networks to ease the need for early-stopping.

Dittmer et al. [27] study DIP through the lens of regularization
theory [1]–[3], and Cheng et al. [28] discuss its connec-
tion with Gaussian processes as the number of architecture
channels grows to infinity, and propose the use of Bayesian
learning. There are several efforts to combine DIP with explicit
regularization to improve the reconstruction quality. [6], [29]
propose the use of total variation penalty for stabilizing the
learning process, and [30] combines DIP with regularization
by denoising. Besides, the use of explicit regularization sig-
nificantly relaxes the need of early stopping. Jo et al. [24]
propose to penalize the complexity of the reconstruction using
Stein’s unbiased risk estimator. See also [25] for a stopping
criterion based on monitoring the running variance of iterate
sequence and references therein for further discussions. [6]
suggests at test-time to start optimizing a randomly initialized
DIP to match a reconstruction, produced by another method.
Heckel and Soltanolkotabi [31] prove that for compressed
sensing, an untrained CNN can approximately reconstruct
signals and images that are sufficiently structured, from a
near minimal number of random measurements. The very
recent work [32] establishes the equivalence of "analytic"
DIP with the standard Tikhonov regularization, and several
basic properties in the lens of classical regularization theory.
This work complements and expands on these existing studies
by addressing the computational challenge associated with
regularized DIP, especially the works [6], [29], where the
regularized DIP was proposed and empirically demonstrated.

b) Advances in Pretraining: Supervised pretraining on
ImageNet has been established as a common practice in com-
puter vision. Neural networks are pretrained to solve image
classification, and transferred to downstream tasks (e.g. object
detection [33], [34] and semantic segmentation [35]). How-
ever, pretraining on ImageNet does not necessarily improve the
accuracy of the downstream task [36], and similar observations
about pretraining on ImageNet are made about medical image
classification [37]. Within tomographic imaging, several works
[38], [39] employ transfer learning to adapt a trained neural
network from one task setting to another. Our work shares
similarities with these works in adapting to changes of the
image distribution. These works focus on supervised end-to-
end fine-tuning, whereas we focus on an unsupervised learning
framework: we study pretraining with a synthetic dataset as
a means for accelerating DIP reconstruction on measured
µCT data, and provide a detailed analysis of its acceleration
mechanism. Very recently, Gilton et al [7] proposes to fine-
tune the pretrained model so as to accommodate model errors,
but unlike this work, the image distribution is unchanged.
Inspired by an early version of this paper, Knopp and Grosser
[11] also demonstrated the potential of warm-starting DIP for
dynamic tomography.

IV. PROPOSED METHOD

The TV-regularized DIP approach obtains x∗ by

θ∗t ∈ argmin
θ

{
lt(θ) := ‖Aϕθ(z)− yδ‖2 + γ TV (ϕθ(z))

}
,

x∗ = ϕθ∗t (z), (1)
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θ∗s → θinit

θ∗t ∈ argmin
θ

lt(θ; yδ)

x∗ = ϕθ∗t (z)

argmin
θ

ls(θ; {(xn, A†ynδ )}Nn=1) 3

fine-tuningpretraining

A

synthetic simulated

Fig. 1. A two-stage learning paradigm. The parameters θ of the U-Net are
first optimized on a dataset comprising ordered pairs of synthetic ground truth
images xn and simulated measurement ynδ . The optimal configuration θ∗s is
then used to warm-start the unsupervised fine-tuning on real µCT data.

where ϕθ is a CNN, and γ ≥ 0 balances the data consistency
with the regularization term TV(ϕθ(z)), which denotes the
total variation seminorm on the network output ϕθ(z), defined
as TV(x) = ‖∇hx‖1 + ‖∇vx‖1, where ∇h and ∇v denote
the derivative in the horizontal and vertical directions. Several
studies [6], [29] found that incorporating the total variation
penalty is beneficial to DIP. The loss lt in (1) is optimized
with Adam [40], by randomly initializing θ. The learning is
performed as (single-batch) test time adaptation to yδ .

In this work, we recast DIP into the “supervised pretraining
+ unsupervised fine-tuning” paradigm as a two-stage process,
called educated DIP (EDIP); see Fig. 1 for a schematic illus-
tration of the framework. In the first stage, we pretrain the net-
work ϕθ(A†yδ), where A† is an approximate inverse operator
(e.g. filtered back-projection (FBP) for CT [41]). The training
is carried out on a synthetic dataset D = {(xn, ynδ )}Nn=1,
composed of N pairs drawn from the joint distribution of
ground truth xn and corresponding simulated measurement ynδ .
This step is tailored to the target reconstruction task in (1), and
learns the optimal parameters θ∗s via supervised training,

θ∗s ∈ argmin
θ

{
ls(θ) :=

1

N

∑
(xn,ynδ )∈D

‖ϕθ(A†ynδ )− xn‖2
}
. (2)

Note that ϕθ receives A†ynδ as its input (instead of the random
noise in [10]), serving as a post-processing reconstructor [42].
The objective of this stage is to enforce “benignant” inductive
biases via supervised learning. This educates DIP with knowl-
edge contained in the dataset D, which is then exploited, but
still needs to be amended, in solving the reconstruction task
in (1).

In the second stage, for a given new query measurement yδ ,
we use the optimal parameters θ∗s obtained in the pretraining
stage to initialize the network ϕθ(A†yδ) in (1) so as to get DIP
up to speed in handling target tasks on real-measured data.
That is, we regard the DIP optimization as a self-adaptation
step, where the parameters θ are fine-tuned unsupervisedly,
with their drift conditioned on θ∗s . Note that the robustness
of this method at test time does not rely solely on how
well the pretraining stage anticipates distributional shifts. The
model makes a good use of pretraining — the supervised
pretraining stage sets and constrains the stage — but adapts
to distributional shifts at test time, and reserves its right to
amend the received supervision.

There are several possible variants of the basic framework.
U-Net consists of two parts, a decoder with parameters θdec,
and an encoder with parameters θenc. A direct variant of EDIP
is to fine-tune only the decoder parameters θdec, but fixing the
encoder parameters to the educated guess θ∗s,enc, which are
regarded as a shared (between stages) feature extractor. At test
time, we solve (1) only with respect to θdec and rely on the
pretraining to construct a suitable “universal” encoding. Thus,
the learned reconstructor ϕθ∗ recovers from the measurement
data with θ∗ = (θ∗s,enc, θ

∗
t,dec). This variant with the fixed

encoder (FE) is termed as EDIP-FE.

V. DATASETS

A. Synthetic Training Dataset

We pretrain on a synthetic training dataset of images com-
posed of ellipses or ellipsoids with random position, shape,
orientation and intensity values, which are commonly used to
train and evaluate learned reconstruction methods. This image
class encompasses basic building blocks of more complex
images, while favoring piece-wise smoothness. Synthetic data
is particularly useful when it is infeasible to collect high-
quality ground truth images reassembling the image class of
the target reconstructive task, while enabling the learning of
features tailored to the inversion of the forward operator A. In
the experiments, we use datasets of 32 000 training and 3200
validation images generated on-the-fly using ODL [43]. The
image resolution and the distribution of the ellipses / ellipsoids
can be easily adapted to match different target data. The
synthetic projection data is computed by forward projecting
the ground truth images and adding 5 % white noise. Fig. 2
shows an exemplary ground truth image and reconstructions
obtained by the FBP and U-Net from the simulated noisy data.

Fig. 2. An exemplary ground truth image used in the pretraining stage. The
FBP and U-Net reconstructions are also shown. The measurement data yδ is
simulated using the Walnut Sparse 120 setting, adding 5% white noise.

B. Real µCT Measurement Data

We evaluate our approach on two real µCT datasets to
showcase the effectiveness of the approach. The forward
operator A is a ray transform matching a 2D or 3D cone-
beam geometry (cf. Fig. 3 for 2D). The scanner rotates around
the object (or, equivalently, the object is rotated inside the
scanner), taking projections from different source angles λ.
Within each projection, each detector pixel (e.g. parameterized
by γ) measures the intensity for a specific line, attenuated by
the object.
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Fig. 3. Diagram of the 2D cone-beam geometry (a.k.a. fan-beam geometry).

a) X-ray Lotus Root Dataset: µCT measurements of a
Lotus root slice filled with different materials are available
from [44]. The dataset contains fan-beam measurements corre-
sponding to a 2D volume slice, with 120 projections at angles
equally distributed over [0, 360◦) and 429 detector pixel values
each. The sparse matrix modeling the forward operator for
an image resolution (128 px)2 is used. In the evaluation, we
consider the setting of Sparse 20: a 6-fold angular sub-
sampling, 20 angles, equally distributed over [0, 360◦). We
use a TV-regularized reconstruction from all 120 projection
angles, obtained by Adam, as the reference solution.

b) X-ray Walnut Dataset: A collection of cone-beam
µCT measurement data from 42 Walnuts was provided in [45].
For each walnut, a set of three 3D cone-beam measurements
is included, each obtained with a different source position.
Projections are acquired at 1200 angles equally distributed
over [0, 360◦), with a resolution of 972 detector rows and 768
detector columns. A volume resolution of (501 px)3 is used.
We consider reconstructing a single 2D slice from a suitable
subset of detector pixel measurements, and 3D reconstruction
with a downscaled image resolution of (167 px)3. For the
2D task, we use the setting of Sparse 120: a 10-fold
angular sub-sampling with 120 angles, equally distributed
over [0, 360◦); for 3D, we consider the settings 3D Sparse
20 and 3D Sparse 60 with 20 and 60 equally distributed
angles, and sub-sample the projection rows and columns by
a factor of 3. The 3D settings are chosen to mimic industrial
applications, where a high degree of sparsity is often desired.
The approximations A†yδ are computed via the Feldkamp-
Davis-Kress (FDK) algorithm [46]. FDK is an FBP-based
algorithm with a weighting step for cone-beam measurements,
and is still denoted as “FBP”. To achieve accurate automatic
differentiation of the forward projection operator in 2D, we
utilize its sparse matrix representation. In 3D, we opt for
forward and backward projection routines of ASTRA via
tomosipo [47]. We use the ground truth provided with the
dataset [45], which was obtained with accelerated gradient
descent using the measurements from all 1200 projection
angles and all three source positions.

VI. EXPERIMENTS AND RESULTS

Throughout, we denote the type of the network input z used
for a method in brackets: for example, “DIP (noise)” refers to
the standard DIP with noise input, while “EDIP (FBP)” stands
for the educated DIP with FBP input.

A. Neural Network Architecture

For 2D settings, we adopt the U-Net proposed by [6], but
replace batch-normalization layers with group-normalization
layers. For 3D µCT reconstructions, we fine-tune the architec-
ture, cf. Fig. 4, since the standard 3D U-Net — originally in-
troduced for segmentation [48] — does not meet our memory
constraint, and a naively reduced version leads to sub-optimal
reconstructions. We modify the U-Net architecture as follows:
(i) reduce the numbers of channels per convolutional layer
in the encoder; (ii) increase the expressivity of the decoder
by chaining subsequent convolutional layers with decreasing
number of channels; (iii) remove skip connections. Due to
memory constraints (i.e. 24 GB VRAM), we use a 3-scale 3D
U-Net.

Fig. 4. The architecture of the proposed 3D U-Net. Each light-blue bar
corresponds to a multi-channel feature map. Arrows denote the different
operations.

B. Evaluation Metrics

We measure the reconstruction quality via peak signal-to-
noise ratio (PSNR), and include structural similarity index
measure (SSIM) [49] for reconstructions. To assess the con-
vergence speed, we employ two metrics: steady PSNR and
rise time (denoted by ? in the figures). The steady PSNR
is the median PSNR over the last 5k iterations. The rise
time is the iteration number at which we reach the baseline
PSNR (i.e. DIP’s steady PSNR) up to a threshold 0.1 dB. In
addition, we always consider the iteration-wise median PSNR
over repeated runs of the same experiment (with varying seeds)
for these metrics; we use 5 runs for 2D and 3 runs for 3D.
The variability between runs does arise not only from random
initialization of the network parameters or noise input, but also
from numerical effects in parallel computations on GPU. The
optimal reconstruction ϕθmin-loss(z) is taken from the iteration
with minimum loss value lt(θmin-loss) = mini∈0...N lt(θ

[i]).
This remedies non-monotonous loss minimization, yet the
(E)DIP optimization plots and steady PSNR computations use
the actual iterate to facilitate a direct analysis.

C. Hyperparameter’s Selection

The learning rate and regularization parameter γ are fine-
tuned for standard DIP. For EDIP, we do not conduct additional
hyperparameter search, but use the values identified for DIP.
These hyperparameters values also perform well for EDIP,
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Fig. 5. The optimization of EDIP versus DIP on Lotus Sparse 20. The
symbols ? and N denote initial PSNR and rise time, respectively, and the
horizontal dashed line indicates the steady PSNR of DIP (noise).

Fig. 6. Checkpoint selection on the Shepp-Logan phantom for the initial
EDIP (FBP) model parameters for the Lotus Sparse 20 setting.

which saves us from performing an individual search for each
pretraining checkpoint (to be defined next).

D. Selection of the Checkpoints

Multiple parameters’ configurations (i.e. θ∗s ) may be ob-
tained from the pretraining stage: repeated runs (varying
random initializations) and multiple checkpoints along the
optimization trajectory of each run. From a set of checkpoints,
one needs to identify solutions maximizing the speed-up at test
time. More broadly, this is an open question. In the experi-
ments below, the selection strategy is based on assessing the
performance on the Shepp-Logan phantom [50], a standard test
image within the medical imaging community. The checkpoint
leading to the shortest rise time is then selected, among those
with a steady PSNR that is at most 0.25 dB lower than the
maximum steady PSNR of any checkpoint. This selection is
carried out for 2D reconstruction settings; 3D runs use the best
performing checkpoint for computational reasons. For Lotus
Sparse 20, we repeat the pretraining 3 times (varying the
seed) and collect checkpoints after every 20 epochs, training
for a maximum of 100 epochs. For the Walnut Sparse 120,
we pretrain for 20 epochs, and retain the minimum validation
loss checkpoint of each run. For the 3D Walnut settings, we
pretrain for a maximum of 2 epochs, and retain checkpoints
every 0.125 epochs (i.e. 4k gradient updates).

E. The Lotus Root

Table I shows the convergence properties of EDIP and DIP
for Lotus Sparse 20. We include in our analysis cases
where the FBP A†yδ is fed as the input (instead of noise)
when solving (1) for DIP, and inputting noise for EDIP. EDIP
significantly outperforms DIP in terms of the convergence
speed for either a fixed noise image or FBP.

EDIP only takes 195 (and 723 for noise input) iterations
to reach −0.1 dB of the baseline PSNR, against 4.1k iter-
ations needed for DIP. Thus, pretraining greatly accelerates
the convergence. The optimization process is considerably
more stable (cf. Fig. 5), implying a possibly much more

TABLE I
QUANTITATIVE EVALUATION FOR THE LOTUS SPARSE 20.

Ellipses-Lotus Sparse 20

Rise time (Max PSNR; iters) Steady PSNR

DIP (noise) 3848 (31.17; 8846) 31.10
DIP (FBP) 3622 (31.25; 8813) 31.17
DIP-FE (noise) 6118 (31.10; 9818) 31.00
EDIP (FBP) 195 (31.65; 981) 31.21
EDIP (noise) 723 (31.53; 3548) 31.39
EDIP-FE (FBP) 226 (31.59; 1421) 31.26
TV – – 30.73

favorable loss landscape for EDIP. Thus, pretraining stabilizes
the optimization process of DIP, which is highly desirable
in practice. Note that EDIP-FE, which fixes the encoder
parameters to the pretrained ones θ∗s,enc, is as fast as EDIP,
and the reconstruction quality of EDIP and EDIP-FE are
largely comparable with each other. With fewer parameters
to be updated, EDIP-FE is computationally lighter than EDIP
(since backpropagation is only needed for the decoder, and
the forward pass through the encoder can be pre-computed
beforehand). Fig. 7 shows the reconstruction (along with the
reference and FBP) for Lotus Sparse 20. We observe that
pretraining can also boost the performance of DIP: EDIP
considerably overshoots the baseline PSNR, cf. Fig. 5. This
suggests that pretraining, if coupled with proper early-stopping
(approximately a few hundred iterations after the rise time),

TABLE II
CHECKPOINTS’ COMPARISON FROM THE PRETRAINING STAGE FOR EDIP

(FBP) ON LOTUS SPARSE 20. THE CHECKPOINT FROM RUN 2 AFTER 100
EPOCHS IS SELECTED USING THE SHEPP-LOGAN DATA (CF. FIG. 6)

Epochs Rise time (Max PSNR; iters)

Run 0
100 247 (31.49; 1545)

60 174 (31.56; 842)
20 291 (31.61; 1614)

Run 1
100 162 (31.53; 779)

60 243 (31.53; 1755)
20 390 (31.56; 1518)

Run 2
100 195 (31.65; 981)

60 194 (31.58; 1083)
20 318 (31.51; 1706)



6

PSNR: 31.15 dB, SSIM: 0.8387

EDIP (FBP)

PSNR: 31.14 dB, SSIM: 0.8398

DIP (noise) Reference

PSNR: 27.04 dB, SSIM: 0.7037

EDIP (FBP) initial DIP (noise) initial

PSNR: 21.15 dB, SSIM: 0.3213

FBP

Fig. 7. EDIP versus DIP reconstruction on Lotus Sparse 20. From the
5 runs (varying the seed), the one with the (closest to) median PSNR was
selected for each method.

PSNR: 33.31 dB, SSIM: 0.7748

EDIP (FBP)

PSNR: 33.92 dB, SSIM: 0.7686

DIP (noise) Ground truth

PSNR: 25.67 dB, SSIM: 0.7584

EDIP (FBP) initial

PSNR: 33.68 dB, SSIM: 0.8170

EDIP (FBP) iter. 4500

PSNR: 16.21 dB, SSIM: 0.1398

FBP

PSNR: 27.18 dB
SSIM: 0.9274

PSNR: 26.90 dB
SSIM: 0.9001

PSNR: 27.30 dB
SSIM: 0.9124

PSNR: 26.44 dB
SSIM: 0.8857

PSNR: 18.67 dB
SSIM: 0.5813

PSNR: 18.71 dB
SSIM: 0.5448

PSNR: 27.16 dB
SSIM: 0.9202

PSNR: 26.34 dB
SSIM: 0.8871

PSNR: 17.35 dB
SSIM: 0.5888

PSNR: 18.29 dB
SSIM: 0.6233

Fig. 8. EDIP versus DIP reconstruction of Walnut sparse 120.

TABLE III
QUANTITATIVE EVALUATION FOR THE WALNUT.

Ellipses/Ellipsoids-Walnut Sparse 120 3D Sparse 20 3D Sparse 60

Rise time (Max PSNR; iters) Steady PSNR Rise time (Max PSNR; iters) Steady PSNR Rise time (Max PSNR; iters) Steady PSNR

DIP (noise) 20 373 (34.02; 25 357) 33.87 17 200 (30.68; 23 477) 30.37 49 041 (34.05; 58 901) 33.93
DIP (FBP) 13 778 (34.07; 28 094) 33.90 13 016 (31.32; 25 063) 31.19 27 873 (34.37; 53 731) 34.22
EDIP (FBP) 4496 (33.92; 13 039) 33.56 3739 (31.48; 10 689) 30.94 11 247 (34.35; 40 810) 34.18
EDIP-FE (FBP) 4384 (33.91; 12 540) 33.70 2979 (31.38; 10 749) 30.93 14 520 (34.33; 45 259) 34.15
TV – – 31.67 – – 28.89 – – 33.35

can lead to better reconstructions.
To maximize the speed-up, we select the warm-start con-

figuration θ∗s on the Shepp-Logan phantom. Fig. 6 shows the
validation runs. We select θ∗s from run 2 after 100 epochs since
it results in the smallest rise time. Interestingly, a substantial
overshoot of baseline PSNR is observed on the Shepp-Logan
phantom, possibly due to its in-distribution nature with respect
to the ellipses. Table II reports the rise time at test time for
different checkpoints collected for each run. The results indi-
cate that the checkpoint selection does impact the achievable
acceleration factor, but not the maximum PSNR.

F. The Walnut

Fig. 8 shows the reconstructed Walnut slice; see Table III
for quantitative results. A speed-up is observed, similar to the
Lotus root: EDIP takes about 30 min at rise time (approxi-
mately 4.4k iterations), whereas DIP (with noise input) takes
2 h and 30 min at rise time (approximately 20.4k iterations)
with NVIDIA GeForce RTX 2080Ti. A TV regularized recon-
struction of the Walnut takes 6 min, and requires 1.7k gradient
steps to converge to 31.67 dB. EDIP takes only 3 min (after
421 iterations) to match 31.67 dB. In 6 min, EDIP reaches
32.80 dB, with a gain of 1.1 dB. Finally, DIP-FE / EDIP-FE
report similar performances to DIP / EDIP.

On a minor note, it is observed that EDIP better reconstructs
finer structures (e.g. the wrinkled shell), and DIP suffers from
over-smoothing artifacts. This concurs with the observation

for Lotus Sparse 20: by incorporating the knowledge con-
tained in the synthetic training data, pretraining can boost the
performance of DIP.

Similar observations can be made for reconstructing the
Walnut volume, cf. Fig. 9 for 3D reconstructions along the
yz, xz, and xy axes and Table III for quantitative results.
EDIP reconstruction from the 3D Sparse 20 data takes
approx. 1.5 h with a NVIDIA GeForce RTX 3090, and leads
to 33.77 dB in PSNR, compared to 7.3 h and 5.53 h for DIP
(with noise / FBP as input). EDIP matches the PSNR of
a TV reconstruction in about 30 min, gains 1 dB over TV
after additional 20 min, and it takes 2.3 h to observe a 2 dB
gain. The 3D Sparse 60 leads to similar speed-up. It takes
20 h for DIP with noise as input. Inputting the FBP results
already in a considerable speed-up (about 11 h), whereas
EDIP requires only 4 h. In sum, pretraining on the synthetic
ellipsoids dataset greatly accelerates the convergence of DIP
for 3D µCT reconstruction.

Last, we briefly comment on the convergence of the
optimization process, cf. Fig. 10. The overall convergence
behavior for 2D and 3D is similar to Lotus Sparse 20:
pretraining stabilizes DIP optimization and greatly accelerates
the convergence. Fig. 11 shows the convergence and stability
of the loss in (1). The variation of the loss value is reduced if
EDIP is used. As a practical post-hoc strategy to overcome the
instability of the DIP optimization scheme, the reconstructed
image is taken as the network output at minimum loss.
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Fig. 9. 3D Walnut reconstruction of EDIP pretrained on ellipsoids dataset, compared to standard DIP, at three different slices.

Fig. 10. The optimization of EDIP versus DIP for the Walnut reconstruction
in 2D (top) and 3D (bottom). The symbols ? and N denote initial PSNR
and rise time, respectively, and the horizontal dashed line indicates the steady
PSNR of DIP (noise).

VII. INVESTIGATION OF THE ROLE OF PRETRAINING

In this section, we first motivate why we use a standard
pretraining strategy instead of resorting to more sophisticated
schemes, and then we shed insight into the mechanism of
knowledge transfer via pretraining, highlighting favorable as
well as detrimental properties.

Fig. 11. The min-loss and PSNR computed with the min-loss output
for Walnut Sparse 120 (left). Loss variation (i.e. |lt(θ[i+1]) − lt(θ[i])|)
and respective histograms computed over three intervals (right). The moving
average uses a window size of 100 iterations.

a) Standard, Adversarial, Meta?: In this work, we adopt
the standard pretraining paradigm within our pretraining stage,
as described in Sec. IV. The choice is informed by comparing
standard pretraining, adversarial pretraining [51], [52] and
model agnostic meta-learning (MAML) [53], [54] on the
Lotus Sparse 20. Adversarial pretraining uses a projected
gradient descent attack (PGD-L2 [55], [56]). MAML-based
pretraining obtains a parameters’ configuration training on
six different tasks, comprising three different image classes:
ellipses, rectangles [57], and natural images from the PASCAL
VOC segmentation dataset [58], as well as two different
noise distributions: Gaussian and Poisson. We do not vary
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the forward operator A, since the pretraining stage is tailored
to a known acquisition geometry; varying the structure of A
(e.g., via sparsification) would only withhold from the model
operator-specific knowledge, and introduce artifacts that are
not expected to be found in the subsequent reconstruction
tasks. We investigate whether the parameters’ configurations,
found with adversarial pretraining and MAML, lead to general
representations adapting faster to the subsequent reconstruc-
tion problem. It is observed from Tab. IV that all three
pretraining strategies lead to parameters’ configurations that
adapt to the subsequent reconstruction task with approximately
similar speed-up. Even if the adaptation to the subsequent task
shows on par properties, adversarial pretraining and MAML
introduce a significant computational overhead, which we find
unnecessary. The latter can be attributed to the facts that
adversarial pretraining requires the inclusion of an inner loop
optimization to design the attack (adding 62h to the wall-clock
time); MAML’s outer loop updates θs, while the inner one
(with one step of stochastic gradient descent) adapts θs to a
given task. MAML, instead, increases (×5) the overall VRAM
required.

TABLE IV
QUANTITATIVE EVALUATION OF ALTERNATIVE PRETRAINING

STRATEGIES FOR THE LOTUS ALONG WITH THE WALL-CLOCK TIME
RECORDED ON A NVIDIA RTX 2080TI.

Ellipses-Lotus Sparse 20

Rise time (Max PSNR; iters) (VRAM; batch size) Time

EDIP (FBP) 195 (31.65; 981) (5941MiB; 32) 23h
Adv.-L2-EDIP (FBP) 143 (31.24; 1175) (6093MiB; 32) 85h
MAML-EDIP (FBP) 545 (31.54; 1512) (7949MiB; 8) 31h

b) In Need to Amend: Figs. 7 and 8 show that the
reconstructions obtained by directly deploying the pretrained
network (i.e. ϕθ∗s ) on the FBP of the real-measured µCT
data do enjoy good reconstructive properties, but the images
tend to be overly-smooth and severely affected by ellipses-like
artifacts, which are naturally present in the synthetic training
dataset. Indeed, initializing the network’s parameters to the
pretrained configuration, on both Lotus and Walnut, shows a
gain of 5.8 dB, and of 9.4 dB (Sparse 120), 6.7 dB (3D
Sparse 20), 2 dB (3D Sparse 60) over the FBP. The
pretrained model enjoys high input-robustness, and feature
reuse plays a very important role in the EDIP reconstruction.
However, the feature reuse mechanism leads to undesirable
hallucinatory behaviors, as evidenced by the ellipses-like ar-
tifacts, which is a form of inductive biases induced by the
synthetic image class. This also indicates the importance of
properly designing the synthetic dataset used in the pretraining
stage, from which the features are learned, and the strong
dissimilarity between the synthetic training data and real
test data may actually deteriorate the performance. In the
supplementary materials, we showcase one potential pitfall
of the “supervised pretraining + unsupervised fine-tuning”
paradigm for DIP, resorting to synthetic data generated by a
by far too specific and less diverse image class, i.e., human
brain images for the supervised learning stage.

The knowledge enforced via the synthetic dataset needs to
be properly amended so that the reconstructed images recover

a more realistic texture. This is achieved at the fine-tuning
stage by enforcing the data consistency. Amending the knowl-
edge acquired via pretraining protects from hallucinations due
to (inevitable) distributional shifts, thereby overcoming a well-
known drawback of supervised learned reconstructors [59].

c) Investigating Feature Reuse: In a similar spirit to [60],
we feed a noise image to EDIP (trained on pairs of FBP
and ground truth image), which makes any visual features
learned in the pretraining stage useless. This allows us to
disentangle influencing factors involved in the fine-tuning
stage. We consistently observe faster convergence of EDIP
with respect to the standard DIP for the Lotus dataset. EDIP
(fed with FBP) still results in faster convergence, which agree
well with the intuition that decreasing feature reuse leads to
diminishing benefits. Fig. 12 (left) shows that EDIP remolds
the noise image differently compared to the standard DIP.
The learned inductive biases prioritize reshaping the noise
image as ellipse-like structures. The model makes an educated
reconstruction. The features learned during pretraining are
invariant of the input. The pretrained model is then adapted
by enforcing data-consistency via (1).

On the Walnut, cf. Fig. 12 (right), the benefit of pretraining
is less pronounced, if a noise image input is used. This might
be due to the fact that the Walnut has a higher resolution and
many more fine details, which are not present in the training
dataset. Nonetheless, pretraining can still remold noise input
into a walnut faster than DIP, yet the FBP input (used in the
pretraining) is even more effective. These observations fully
agree with that for Lotus.

d) Getting θ∗s Right: The starting point θ∗s of fine-tuning
can impact the adaptation speed. A selection procedure of θ∗s
is desired to maximize transferable performance (e.g. speed-
up). On the 2D setting, pretraining for more epochs (100 vs.
20) leads to a faster adaptation. This is clearly observed on
the Lotus, possibly due to the in-distribution nature of the
image class with respect to the ellipses dataset. However,
on more complex tasks (3D Sparse 20 and 3D Sparse
60), extensive pretraining leads to overfitting the image class,
and enforcing dataset-specific knowledge appears detrimental
to the transfer. Fig. 13 shows that extensively pretraining U-
Net for 2 epochs (i.e. 64k gradient updates with 32k ellipsoid
volumes), albeit yielding the highest initial PSNR, leads to
a sub-optimal convergence: the network output is effectively
constrained, as an over-trained φθ∗ after 2 epochs has little
freedom to amend. This is also observed on the 3D Sparse
60 setting.

e) Spectral Evaluation: We propose a spectral analysis
to understand the “education” by linearizing the non-linear
forward map F (θ) = Aϕθ(A

†yδ) at θ0:

F (θ) = F (θ0) + F ′(θ0)(θ − θ0),

with F ′(θ0) = Aϕ′θ0 ∈ Rm×p with ϕ′θ0 = ∂ϕθ/∂θ|θ=θ0 ∈
Rn×p denoting the Jacobian of the network’s output w.r.t.
θ. We use the subspace spanned by leading right singular
vectors vi of F ′(θ0) (i.e. with the largest singular values)
as a faithful representation of the network’s parameter space,
which determines the dynamics of the learning process. Due
to the high-dimensionality of the output and parameter spaces,



9

Ite
ra

tio
n 

2
EDIP (noise) DIP (noise)

Ite
ra

tio
n 

25
Ite

ra
tio

n 
10

0

Ite
ra

tio
n 

20
0

EDIP (noise) DIP (noise)

Ite
ra

tio
n 

50
0

Ite
ra

tio
n 

10
00

Ite
ra

tio
n 

10
0

EDIP (FBP) EDIP (noise) DIP (noise)

Ite
ra

tio
n 

15
0

Ite
ra

tio
n 

25
0

Fig. 12. Iterates collected throughout the EDIP/DIP reconstruction from Lotus Sparse 20 (left) and Walnut Sparse 120 (right), after different numbers
of iterations. A video showing the reconstruction process is available at https://educateddip.github.io/docs.educated_deep_image_prior/.

Fig. 13. The optimization of EDIP using parameters from different check-
points for EDIP (FBP) on Walnut 3D Sparse 20. The symbols ? and N
denote initial PSNR and rise time, respectively, and the horizontal dashed line
indicates the steady PSNR of DIP (noise).

directly computing ϕ′θ0 is intractable. We approximate the first
` singular vectors of F ′(θ0) via randomized singular value
decomposition (rSVD) [61], [62], and proceed in two steps
(cf. Algorithm 1):

Stage #1: Randomized Range Finder. To construct a sub-
space capturing most of the action of F ′(θ0), we draw a
Gaussian random matrix Ω ∈ Rp×` and form F̄ = F ′(θ0)Ω ∈
Rm×`. To avoid the direct evaluation of ϕ′θ0 , for any column
ω of Ω, we use a finite difference approximation: ϕ′θ0ω =
(ϕθ0+εω − ϕθ0−εω)/(2ε), where ε > 0 is a small constant.
Then we find an orthonormal matrix Q ∈ Rm×` for the range
of F̄ , using the standard QR factorization [61], [62].

Stage #2: Direct SVD. Next we construct a low-rank matrix
B = Q>F ′(θ0) ∈ R`×p, or equivalently, B> = F ′(θ0)>Q,
which can be computed via backpropagation, and then ap-
proximate the singular values and the right singular vectors of
F ′(θ0) by that of B ≈ UΣV > (with the last few discarded as

Algorithm 1 rSVD for Linearized Forward Map
Require: the Jacobian matrix F ′(θ0), the target rank κ, and

oversampling parameter o
1: Draw a p×(` = κ+o) Gaussian random matrix Ω = (ωij)
2: Form F̄ = F ′(θ0)Ω
3: Construct an orthonormal basis Q of range(F̄ ) using QR

decomposition
4: Form the matrix B = Q>F ′(θ0)
5: Compute the SVD of B = W Σ̃`Ṽ`
6: Return Σ̃κ, Ṽκ

oversampling: default choice 5). Since the size of B ∈ R`×p is
much smaller than that of F ′(θ0), a direct SVD computation
is indeed feasible.

In the analysis, we use the 995 leading singular values and
the corresponding right singular vectors, which are used to
represent the parameters. We investigate EDIP and DIP, both
receiving the FBP as the input, and respectively approximate
the singular vectors of the Jacobian, evaluated at three check-
points during the fine-tuning stage (θinit, θ[100], θconv). Fig. 14
summarizes our empirical findings, showing the right singular
values component-wise plots and Hoyer measure of sparsity
[63], [64]. Hoyer measure takes a value 0 if the vector is dense
(i.e. all components are equal and non-zero) and 1 if it is 1-
sparse. The histogram is computed for the two sets of singular
vectors, i.e., {v1, . . . , v20} and {v976, . . . , v995}, separately, in
order to examine the behavior at the different frequency bands.
For DIP, the singular vectors are equally distributed throughout
the parameter space (at θinit) and across different singular
values. During the fine-tuning stage, we observe a “relevance
shift” towards the decoder’s parameters (at θ[100] and at θconv,
respectively), which is attributed to the fact that the heavy-
lifting of representing the target image is actually done by the
decoder. This is also consistent with our experimental find-
ings: EDIP-FE shows very similar reconstruction properties to
EDIP. For EDIP, pretraining enforces a hierarchical structure

https://educateddip.github.io/docs.educated_deep_image_prior/
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Fig. 14. The evolution of right singular vectors of the linearized forward map (i.e., the Jacobian) w.r.t. the network parameters θ for EDIP (FBP) versus
DIP (FBP) on Lotus Sparse 20 dataset. The parameters are ordered like they occur in the network, i.e. lower positions on the parameters axis refer to the
encoder while higher positions refer to the decoder. (a) and (b) show mean histograms for the right singular vectors v1, . . . , v20 and v976, . . . , v995, which
represent the low-frequency and high-frequency bands of the singular vectors, respectively; the numbers in brackets denote Hoyer measure of sparsity [63],
[64].
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Fig. 15. The singular values of the linearized forward map (i.e., the Jacobian)
w.r.t. the network parameters θ, at θconv and θinit for EDIP (FBP) and DIP
(noise) on Lotus Sparse 20 data.

(i.e. a relevance shift towards the decoder’s parameters), and
again sparsity is clearly observed after pretraining. Pretraining
strongly promotes sparsity in the basis of the parameter space,
which is further promoted in the fine-tuning stage. This is
observed in both low and high frequency bands. It is worth
noting that even though individual singular vectors exhibit
sparsity, the parameter vector θ does not necessary exhibit
a very high level of sparsity, since the linear combination
might spoil it. The emerging sparsity during pretraining may
facilitate pruning the network, which however is still to be
systematically explored.

Interestingly, pretraining also induces a shift in the singular
values spectrum, and the overall behavior does not vary much
during adaptation, cf. Fig. 15. In contrast, for DIP, the shift

is quite dramatic in terms of the magnitude, as well as the
number of singular values larger than a given threshold. This
may offer an explanation to the very different dynamics of
the optimization scheme for the pretrained model and the
model trained from scratch: in the linearized regime, the
singular value spectrum essentially determines the dynamics
of gradient type algorithms (along with the learning rate), and
the dramatic shift of the singular value spectrum of the DIP
Jacobian may have contributed to the undesirable unsteady
convergence behavior of DIP and indicates the necessity of
carefully tuning the learning rate schedule in order to achieve
a stable convergence behavior.

VIII. CONCLUSIONS

Our work advances unsupervised deep learning-based to-
mographic reconstruction. We develop a two-stage learning
paradigm for accelerating DIP in image reconstruction. It
consists of a supervised pretraining stage on a simulated
dataset to educate DIP and then a fine-tuning stage which
adapts the network parameters to a single test image. The ex-
tensive experimental evaluation clearly shows that pretraining
on simulated data can significantly speed up, and stabilize DIP
reconstruction for 2D / 3D real-measured sparse-view µCT.
The empirical study also indicates that the pretraining stage
can facilitate learning a suitable feature representation, and that
adapting only the decoder’s parameters during the fine-tuning
stage is sufficient to ensure good reconstruction accuracy. The
novel spectral analysis of the linearized model indicates a
strong correlation of the sparsity pattern with the pretraining,
and a drastically different shift of the singular values spectrum
for the standard DIP and the educated version.

There are several avenues for further research. First, there
are other techniques for learning a good initialization for
neural networks, e.g., model-agnostic meta-learning (MAML)
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[53] and adversarial pretraining [51], [52]. These strategies are
also promising, but their full potentials are yet to be explored
within the context of DIP reconstruction. In the spirit of ANIL
(Almost No Inner Loop) [54], we would suggest using a
variant that simplifies the inner loop optimization so as to
improve the scalability of MAML. Second, given the emerging
sparsity pattern in singular vectors, it is natural to ask whether
one can exploit for even faster adaptation, e.g., via pruning or
optimizing in low-dimensional subspaces. Third, the proposal
utilizes the specific forward operator in the pretraining stage,
and hence the pretrained neural network is specialized, where
specialization to the target task is believed to be helpful.
However, addressing multiple settings (e.g., different imaging
modalities and multiple image classes) simultaneously is of
course of interest.
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SUPPLEMENTARY MATERIAL A
µCT MEASUREMENT DATA

A. Cone-Beam Geometry

On the Lotus root, we employ the sparse matrix provided
with the dataset. For the 2D Walnut setting, a sparse matrix
resembling the 2D cone-beam projection is constructed from
the ASTRA geometry, by selecting a single volume slice, and
a suitable subset of the 3D cone-beam projection lines. This
is a non-standard 2D fan-beam setting: (i) the rotation axis is
slightly tilted; (ii) the voxels / pixels are weighted according
to the 3D projections, which differs from the 2D projection
weighting. Specifically, in the integration of the beams for each
detector “pixel”, the contributing area / interval is spreading
in two vs. one dimension(s) with increasing distance from the
source, so the beam density decreases antiproportionally to the
squared distance vs. antiproportionally to the distance. For the
3D Walnut settings, ASTRA’s direct projection routines are
employed via tomosipo. The backward gradients are approx-
imated by back-projection. The geometry definition has been
adapted to match the sub-sampling applied to the volume and
the measurements.

B. X-ray Walnut Details

From the collection of 42 Walnuts, we consider measure-
ments of Walnut 1 taken with source position (or orbit) 2. The
slice with offset +3 px from the middle slice (i.e. zero-based
index 253) is selected for the 2D reconstruction task. A subset
of projection values is determined from the provided ASTRA
geometry by computing the 3D forward projection of a mask,
containing ones for the selected 2D slice and zeros for all
other voxels. We choose one single detector row per column
and angle with maximum intensity. A sparse matrix represent-
ing the forward projection is constructed from the ASTRA
forward projection routine for each unit vector, for which the
transposed matrix gives an exact adjoint of the Jacobian, used
in computing the gradient of (1). The more efficient ASTRA
back-projection routine is not directly applicable due to the
pseudo-2D geometry: some of the excluded detector rows
close to the selected ones contribute to the selected 2D slice
in the back-projection. Another workaround (without matrix
assembly) is to copy the measurement values from the selected
rows to the neighboring rows (a.k.a. edge-mode padding); we
use this to compute approximate FDK reconstructions. For
computing the gradient of the data fitting term in (1), using
the padding followed by the back-projection via ASTRA leads
to degraded results, so we use the sparse matrix multiplication
instead, which yields accurate gradients.

The implementation and the sparse matrix are available at
https://educateddip.github.io/docs.educated_deep_image_prior/.

SUPPLEMENTARY MATERIAL B
METHODOLOGY

A. 2D Network architecture

Fig. 16. The architecture of the U-Net used for the 2D experiments. Each
light-blue bar corresponds to a multi-channel feature map. Arrows denote the
different operations. The number of channels is set to 128 at every scale.

Figure 16 shows the network architecture used. We adopted
the architecture proposed by [6], with the only difference
being that we replace batch-normalization layers with group-
normalization layers.

See also Figure 4 in the main text showing the U-Net
architecture used for the 3D experiments.

B. The Loss

Our DIP implementation uses the loss function

l′t(θ) := 1
m‖Aϕθ(z)− yδ‖

2
2 + γ′ TV(ϕθ(z)),

with the anisotropic total variation penalty TV(x) =
‖∇hx‖1 +‖∇vx‖1, where m is the number of detector pixels
(length of yδ) and ∇h and ∇v are the discrete difference
operators in the horizontal and vertical directions, respectively.

C. Hyperparameter Search

For each setting, suitable hyperparameters for DIP (noise)
are selected by grid search. While the learning rate 1e−4 is
(near) optimal in all cases, the TV-regularization parameter γ′

varies both with the µCT geometry and between validation
data (i.e. Shepp-Logan phantom, simulated data) and test data
(i.e. Lotus or Walnut, real data).

https://educateddip.github.io/docs.educated_deep_image_prior/
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TABLE V
HYPERPARAMETERS FOR (E)DIP ON VALIDATION AND TEST DATA.

Validation Learn. rate γ′ Iters.

Lotus Sparse 20 1e−4 4e−5 37 500
Lotus Limited 45 1e−4 1e−6 15 000
↪→ EDIP (FBP) 1e−4 4e−6 10 000
Walnut Sparse 120 1e−4 2e−7 50 000

Test Learn. rate γ′ Iters.

Lotus Sparse 20 1e−4 1e−4 10 000
Lotus Limited 45 1e−4 6.5e−5 10 000
Walnut Sparse 120 1e−4 2e−7 30 000
↪→ EDIP[-FE] (noise)

pretrained on ellipses
5e−4 to 1e−4 2e−7 30 000

Walnut 3D Sparse 20 1e−4 1e−1 30 000
Walnut 3D Sparse 60 5e−5 1e−1 60 000

The hyperparameters used for DIP and EDIP are listed in
Table V. The parameters are fine-tuned on DIP (noise), except
for the override values specified in the rows starting with
“↪→”. For only two cases, we observe the hyperparameters
that are optimal for DIP (noise) to be severely sub-optimal for
EDIP. For instance, no speed-up is observed for EDIP (noise),
applied to the Walnut Sparse 120, after pretraining on the
ellipses dataset, if the default learning rate 1e−4 is used; while
a higher learning rate leads to an unstable optimization. A
“warm-up” learning rate scheduling with an initial learning
rate of 5e−4, which is linearly decreased to 1e−4 over the first
5k iterations reveals a substantial speed-up. We use the same
learning rate scheduling with DIP (noise), but fail to observe
any improvement. Similarly, we observe that validating on the
Shepp-Logan phantom for the Lotus Limited 45 setting
requires the regularization parameter γ′ to be increased to
4e−6 (instead of 1e−6) for EDIP (FBP) to converge.

TABLE VI
HYPERPARAMETERS FOR LOTUS GOLD-STANDARD REFERENCE

RECONSTRUCTION.

Reference Learn. rate γ′ Iters.

Lotus (full 120) TV 1e-3 5e−5 1000

TABLE VII
HYPERPARAMETERS FOR TV BASELINES ON TEST DATA.

Test Learn. rate γ′ Iters.

Lotus Sparse 20 TV 5e−4 1e−4 5000
Lotus Limited 45 TV 5e−4 4e−5 5000
Walnut Sparse 120 TV 5e−4 4e−7 10 000
Walnut 3D Sparse 20 TV 5e−4 2e−1 5000
Walnut 3D Sparse 60 TV 5e−4 1e−1 5000

SUPPLEMENTARY MATERIAL C
EXTENDED EXPERIMENTAL RESULTS

Here we report additional details about the experiments.

A. The Lotus (Continued)

We also include a limited-view setting, named Lotus
Limited 45: 45 angles, range [0, 135◦) in steps of 3◦.

Fig. 17 shows exemplary reconstructions on the test-fold of
the synthetic datasets used for pretraining, for both Sparse
20 and Limited 45. The FBP suffers severe streak artifacts,
but the trained U-Net can recover the shapes well.

Ellipses-Lotus Sparse 20

PSNR: 19.62 dB, SSIM: 0.3120

FBP

PSNR: 26.60 dB, SSIM: 0.7761

U-Net Ground truth

Ellipses-Lotus Limited 45

PSNR: 15.11 dB, SSIM: 0.2865

FBP

PSNR: 29.01 dB, SSIM: 0.8488

U-Net Ground truth

Fig. 17. Exemplary reconstructions from the synthetic training datasets for
Lotus Sparse 20 and Limited 45.

The PSNR convergence of EDIP on Lotus root for the
Limited 45 setting is shown in Fig. 18; the reconstructions
are reported in Fig. 19. These numerical results indicate
analogous conclusions as for the case of Sparse 20.

Table VIII reports overall tabular results for Lotus Sparse
20 and Lotus Limited 45. Rise time is defined to be the
minimal number of iterations after which the PSNR reaches
steady PSNR of DIP (noise) minus 0.1 dB. Both maximum
PSNR and steady PSNR are computed using the iteration-
wise median PSNR history over the 5 repeated runs (varying
the random seed). For steady PSNR, the median value of the
median PSNR history over the last 5k iterations is considered.
The convergence of TV is observed to be very stable, and we
report the final PSNR. Initial PSNR is the mean value over
the 5 repeated runs.

It is observed that pretraining can substantially accelerate
and stabilize the convergence of DIP. The acceleration factor
is more substantial, when considering the FBP as input. The
maximum PSNR (Max. PSNR) and steady PSNR suggest
that pretraining also improves the reconstruction quality. The
performance of EDIP-FE is largely comparable to EDIP.

Fig. 20 shows the convergence of the loss in (1) and of the
PSNR, where the PSNR is computed using the network output
with minimum loss reached until the current iteration. Using
the minimum loss output is a practical way to overcome the
instability of DIP optimization, clearly observed in the plots
with the raw data in the main analysis. Pretraining greatly
accelerates and stabilizes subsequent unsupervised training of
EDIP, when compared to the standard DIP. This indicates a
more favorable optimization landscape of EDIP / EDIP-FE
than that of DIP. A stable convergence in practice is important
for designing stopping rules for DIP / EDIP.
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TABLE VIII
QUANTITATIVE EVALUATION FOR LOTUS SPARSE 20 AND LOTUS LIMITED 45 WITH EDIP BEING PRETRAINED ON ELLIPSES DATA.

Ellipses-Lotus Sparse 20 Limited 45

Rise time (Max PSNR; iters) Steady PSNR Init PSNR Rise time (Max PSNR; iters) Steady PSNR Init PSNR

DIP (noise) 3848 (31.17; 8846) 31.10 11.17 5470 (29.85; 9690) 29.69 11.17
DIP (FBP) 3622 (31.25; 8813) 31.17 11.33 5419 (29.84; 8898) 29.69 11.32
DIP-FE (noise) 6118 (31.10; 9818) 31.00 11.17 5142 (29.82; 8884) 29.69 11.17
DIP-FE (FBP) 4516 (31.19; 7677) 31.13 11.33 5056 (29.83; 9891) 29.67 11.32
EDIP (FBP) 195 (31.65; 981) 31.21 27.04 524 (29.83; 2734) 29.68 27.55
EDIP (noise) 723 (31.53; 3548) 31.39 14.28 682 (29.94; 4445) 29.80 14.34
EDIP-FE (FBP) 226 (31.59; 1421) 31.26 27.04 245 (29.85; 5533) 29.72 27.55
EDIP-FE (noise) 1414 (31.46; 4278) 31.39 14.28 1279 (29.95; 7095) 29.86 14.34
TV – – 30.73 – – – 29.62 –

Fig. 18. The optimization of EDIP versus DIP on Lotus Limited 45.
All traces are the mean PSNR of 5 runs (varying the seed). The notations N
and ? denote the initial PSNR and rise time, respectively, and the horizontal
dashed line indicates steady PSNR of DIP (noise).

PSNR: 29.66 dB, SSIM: 0.8330

EDIP (FBP)

PSNR: 29.77 dB, SSIM: 0.8353

DIP (noise) Reference

PSNR: 27.55 dB, SSIM: 0.7278

EDIP (FBP) initial DIP (noise) initial

PSNR: 17.22 dB, SSIM: 0.3798

FBP

Fig. 19. Lotus reconstruction of EDIP versus DIP on Lotus Limited 45
data. From the 5 runs (varying the seed), the one with the (closest to) median
PSNR was selected for each method. The reported reconstructions are the best
reconstruction (i.e. reconstruction at the minimum loss value).

B. The Walnut (Continued)

The quantitative results in Table IX validate our findings on
the Lotus root. See also Figs. 21 and 22–23 for convergence
behavior and exemplary reconstructions.
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TABLE IX
QUANTITATIVE EVALUATION FOR WALNUT SPARSE 120 WITH EDIP BEING PRETRAINED ON ELLIPSES DATA. FOR THE EXPERIMENTS MARKED WITH

“*” A HIGHER INITIAL LEARNING RATE WAS USED (SEE TABLE V).

Ellipses-Walnut Sparse 120

Rise time (Max PSNR; iters) Steady PSNR Init PSNR

DIP (noise) 20 373 (34.02; 25 357) 33.87 6.88
DIP (FBP) 13 778 (34.07; 28 094) 33.90 6.26
DIP-FE (noise) 14 289 (34.02; 23 573) 33.88 6.88
DIP-FE (FBP) 13 421 (34.19; 23 266) 33.97 6.26
EDIP (FBP) 4496 (33.92; 13 039) 33.56 25.67
EDIP (noise) * 9561 (34.12; 23 352) 33.95 12.22
EDIP-FE (FBP) 4384 (33.91; 12 540) 33.70 25.67
EDIP-FE (noise) * 21 760 (33.89; 29 159) 33.75 12.22
TV – – 31.67 –

TABLE X
QUANTITATIVE EVALUATION FOR WALNUT 3D SPARSE 20 AND 3D SPARSE 60 WITH EDIP BEING PRETRAINED ON ELLIPSOIDS DATA. BOTH

MAXIMUM PSNR AND STEADY PSNR ARE COMPUTED USING THE ITERATION-WISE MEDIAN PSNR HISTORY OVER 3 REPEATED RUNS (VARYING THE
RANDOM SEED). FOR STEADY PSNR, THE MEDIAN VALUE OF THE MEDIAN PSNR HISTORY OVER THE LAST 5K ITERATIONS IS CONSIDERED. THE

CONVERGENCE OF TV IS VERY STABLE, AND WE REPORT THE FINAL PSNR. INITIAL PSNR IS THE MEAN VALUE OVER THE 3 REPEATED RUNS. ALL
PSNR VALUES ARE IN dB.

Ellipsoids-Walnut 3D Sparse 20 3D Sparse 60

Rise time (Max PSNR; iters) Steady PSNR Init PSNR Rise time (Max PSNR; iters) Steady PSNR Init PSNR

DIP (noise) 17 200 (30.68; 23 477) 30.37 7.29 49 041 (34.05; 58 901) 33.93 7.29
DIP (FBP) 13 016 (31.32; 25 063) 31.19 8.19 27 873 (34.37; 53 731) 34.22 8.62
EDIP (FBP) 3739 (31.48; 10 689) 30.94 19.77 11 247 (34.35; 40 810) 34.18 20.17
EDIP-FE (FBP) 2979 (31.38; 10 749) 30.93 19.77 14 520 (34.33; 45 259) 34.15 20.17
TV – – 28.89 – – – 33.35 –

SUPPLEMENTARY MATERIAL D
VALIDATING PRETRAINING

Different checkpoints are obtained from multiple pretraining
runs (varying the random seed), and by collecting checkpoints
along the optimization trajectory from each run. We identify
the parameters’ configuration to be used at test time from these
checkpoints by selecting the one with the best performance on
a validation set. To this end, we design a reconstructive task
based on the Shepp-Logan phantom, a standard test image
created to assess reconstruction algorithms. The phantom is
by construction within the ellipses data manifold and shares
the same noise distribution of ellipses measurements. The
checkpoint leading to the shortest rise time is selected, among
those with a steady PSNR that is at most 0.25 dB lower than
the maximum reached steady PSNR.

We repeat the pretraining three times (varying the seed) and
collect checkpoints after every 20 epochs for Lotus Sparse
20 and Lotus Limited 45, training for a maximum of
100 epochs. We also include the checkpoint for which the
model shows minimum validation loss. For Walnut Sparse
120 we pretrain for 20 epochs, and retain only the minimum
validation loss checkpoint. Fig. 24 shows the convergence of
the pretraining on the ellipses datasets for the Lotus and the
Walnut settings, along with the learning rate scheduling.

At the validation stage, each checkpoint is evaluated by
performing EDIP fine-tuning on simulated data of the Shepp-
Logan phantom. The validation runs for Lotus Sparse 20,
Lotus Limited 45, and Walnut Sparse 120 are shown
in Figs. 25 and 27, respectively. In the Lotus settings, starting
EDIP fine-tuning using checkpoints from a later epoch (e.g.
60, 80, 100) is more beneficial. Nonetheless, even pretraining

for fewer epochs (e.g. 20) can already greatly benefit the
EDIP fine-tuning, although to a lesser degree. Pretraining
considerably ameliorates the quality of the reconstruction of
the Shepp-Logan phantom for both Lotus and Walnut settings.
Especially for the Lotus Limited 45 setting, it substantially
increases the reconstruction quality.

We then investigate whether the selected checkpoints that
then are used for the test data — both the Lotus and the Walnut
could be considered an out-of-distribution image class — are
still optimal as we switch from the simulated measurements
of the Shepp-Logan phantom to the real-measured test data.
Fig. 26 and Fig. 28 show the PSNR convergence on the test
data using different checkpoints. While we observe a different
behavior between validation and test data, the validation
selects one of the best two checkpoint.
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Fig. 20. Min-loss and PSNR computed with the min-loss output for Lotus
Sparse 20 (left). Loss variation (i.e. |lt(θ[i+1])−lt(θ[i])|) and respective
histograms computed over three intervals (right). The moving average uses
a window size of 100 iterations.

Fig. 21. The optimization of EDIP using different checkpoints for EDIP
(FBP) on Walnut 3D Sparse 60 data. The notations N and ? denote
the initial PSNR and rise time, respectively, and the horizontal dashed line
indicates steady PSNR of DIP (noise).
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Fig. 22. Exemplary reconstructions from the synthetic training dataset of
ellipsoids images for Walnut 3D Sparse 20.

Ellipsoids-Walnut 3D Sparse 60
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Fig. 23. Exemplary reconstructions from the synthetic training dataset of
ellipsoids images for Walnut 3D Sparse 60.
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Fig. 24. Pretraining convergence. Solid lines show the running mean of the training loss since the start of the respective epoch; dashed lines show the mean
validation loss evaluated after each epoch (on a set of 3200 held-out images).

Fig. 25. Validation runs on the Shepp-Logan phantom for selecting the initial EDIP (FBP) model parameters for data in the Lotus Sparse 20 and Limited
45 geometry. For Sparse 20 the model from training run 2 after 100 epochs is selected because it has the shortest rise time (with a sufficiently high steady
PSNR), whilst, for Limited 45 run 1 after 100 epochs is selected.
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Fig. 26. Optimization of EDIP using different checkpoints considered during
validation (see Fig. 25) for EDIP (FBP) on Lotus Sparse 20 data. The
parameters from run 2 after 100 epochs are selected by the validation. The
notations N and ? denote the initial PSNR and rise time, respectively, and the
horizontal dashed line indicates steady PSNR of DIP (noise).

Fig. 27. Validation runs on the Shepp-Logan phantom for selecting the initial
EDIP (FBP) model parameters for the Walnut Sparse 120 geometry. The
model from training run 1 is selected because it has the shortest rise time
(with a high steady PSNR).

Fig. 28. Optimization of EDIP using parameters from different training
runs considered during validation (see Fig. 27) for EDIP (FBP), on Walnut
Sparse 120 data. The parameters from run 1 are selected by the validation.
The notations N and ? denote the initial PSNR and rise time, respectively,
and the horizontal dashed line indicates steady PSNR of DIP (noise).
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SUPPLEMENTARY MATERIAL E
ABLATION STUDY AND LIMITATIONS

We showcase one potential pitfall of the “supervised pre-
training + unsupervised fine-tuning” paradigm for DIP, resort-
ing to a by far too specific and less diverse image class. Instead
of the ellipses dataset, we use human brain images for the
supervised learning stage. We consider MRI images of the
human brain from the ACRIN-FMISO-Brain (ACRIN 6684)
dataset from https://wiki.cancerimagingarchive.net/x/kQIGAg.
For the synthetic dataset, we normalize the extracted 2D
slices and (mis)interpret the values to be X-ray attenuation
coefficients. We use a random data split on patient level,
leading to 30 917 training images and 4524 validation images.
Both training and validation images are augmented by random
rotations. Fig. 29 shows an exemplary reconstruction of the
brain dataset, whilst Fig. 30 reports the pretraining conver-
gence.

Brain-Walnut Sparse 120

PSNR: 10.24 dB, SSIM: 0.0402

FBP

PSNR: 28.33 dB, SSIM: 0.8693

U-Net Ground truth

Fig. 29. Exemplary reconstructions from the synthetic training dataset of
brain images for Walnut Sparse 120.
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Fig. 30. Pretraining convergence.

In Fig. 31, we show the validation on the Shepp-Logan.
Fig. 32 compares DIP and EDIP trained on the brain dataset.
EDIP performs worse than DIP.

Fig. 33 suggests that checkpoints from repeated pretraining
runs also lead to similar subpar results. We observe the inade-
quacy of the brain dataset (of its education!). Pretraining on the
brain dataset induces too dataset specific inductive biases from
which EDIP fails to escape, leading to slow convergence and
sub-optimal steady PSNR. Possibly the implicit regularization
exerted by the pretraining on the brain dataset essentially
restricts the networks from leaving a “pretrained landscape”
of sub-optimal parameters’ configurations.

We then check whether using earlier checkpoints would lead
to better transferable performances. We, indeed, observe that

Fig. 31. Validation runs on the Shepp-Logan phantom for selecting the initial
EDIP (FBP) model parameters pretrained on the brain dataset for data in the
Walnut Sparse 120 geometry. The model from training run 1 is selected
because it has the shortest rise time. Despite the relatively high number of
50k iterations, the (E)DIP optimizations do not fully converge yet.

Fig. 32. The optimization of EDIP versus DIP pretrained on the brain dataset
compared to standard DIP on Walnut Sparse 120 measurement data. All
traces are the mean PSNR of 5 repetitions of the same experimental run
(varying the random seed). See Tab. XI for complementary tabular results.
The notations N and ? denote the initial PSNR and rise time, respectively.

TABLE XI
QUANTITATIVE EVALUATION RESULTS FOR EDIP ON WALNUT SPARSE
120 AFTER PRETRAINING ON THE BRAIN DATASET FOR 20 EPOCHS. NO
RISE TIME CAN BE REPORTED, BECAUSE THE PSNR IS NOT REACHING

THE STEADY PSNR OF DIP (NOISE) MINUS 0.1dB WITHIN THE 30K
ITERATIONS. SEE TABLE IX FOR THE CORRESPONDING RESULTS FROM

STANDARD DIP AND FROM PRETRAINING ON ELLIPSES DATA.

Brain-Walnut Sparse 120 — pretrained for 20 epochs

Rise time (Max PSNR; iters) Steady PSNR Init PSNR

EDIP (FBP) – (33.51; 29 982) 33.35 25.49
EDIP (noise) – (32.67; 29 875) 32.29 12.23
EDIP-FE (FBP) – (33.43; 29 862) 33.24 25.49
EDIP-FE (noise) – (31.06; 29 989) 30.39 12.23

an early-stopping of the pretraining stage on the brain dataset
ameliorates EDIP, cf. Fig. 35. The longer we pretrain on the
brain dataset, the worse EDIP performs subsequently.

https://wiki.cancerimagingarchive.net/x/kQIGAg
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Fig. 33. The optimization of EDIP using parameters from different training
runs considered during validation (see Fig. 31) for EDIP (FBP), pretrained on
the brain dataset, on Walnut Sparse 120 measurement data. The parameters
from run 1 are the ones selected by the validation. The notations N and ?
denote the initial PSNR and rise time, respectively, and the horizontal dashed
line indicates steady PSNR of DIP (noise).
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Fig. 34. Walnut reconstruction of EDIP pretrained on brain dataset, compared
to standard DIP. From the 5 runs (varying the seed), the one with the (closest
to) median PSNR was selected for each method. See Fig. 8 for the Walnut
reconstruction with EDIP pretrained on the ellipses dataset.

Fig. 35. The optimization of EDIP using parameters from different epochs for
EDIP (FBP) on Walnut Sparse 120 measurement data while pretraining
on the brain dataset. The notations N and ? denote the initial PSNR and rise
time, respectively, and the horizontal dashed line indicates steady PSNR of
DIP (noise).
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