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Abstract. A primary interest in dynamic inverse problems is to identify the

underlying temporal behaviour of the system from outside measurements. In
this work, we consider the case, where the target can be represented by a de-

composition of spatial and temporal basis functions and hence can be efficiently

represented by a low-rank decomposition. We then propose a joint reconstruc-
tion and low-rank decomposition method based on the Nonnegative Matrix

Factorisation to obtain the unknown from highly undersampled dynamic mea-

surement data. The proposed framework allows for flexible incorporation of
separate regularisers for spatial and temporal features. For the special case

of a stationary operator, we can effectively use the decomposition to reduce

the computational complexity and obtain a substantial speed-up. The pro-
posed methods are evaluated for three simulated phantoms and we compare
the obtained results to a separate low-rank reconstruction and subsequent de-

composition approach based on the widely used principal component analysis.

1. Introduction. Several inverse problems are concerned with the reconstruction
of solutions in multiple physical dimensions such as space, time and frequency.
Generally, such problems require very large datasets in order to satisfy conditions
for accurate reconstruction, whereas in practice only subsets of such complete data
can be measured. Furthermore, the information content of the solutions from such
reduced data may be much less than suggested by the complete set. In these
cases, regularisation in the reconstruction process is required to compensate for the
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reduced information content, for instance by correlating features between auxiliary
physical dimensions.

For instance, dynamic inverse problems have gained considerable interest in re-
cent years. This development is partly driven by the increase in computational
resources and the possibility to handle large data sizes more efficiently, but also
novel and more efficient imaging devices enabling wide areas of applications in
medicine and industrial imaging. In medical imaging, dynamic information is es-
sential for accurate diagnosis of heart diseases or for applications in angiography to
determine blood flow by injecting a contrast agent to the patient’s blood stream.
But also in nondestructive testing and chemical engineering, tomographic imaging
has become increasingly popular to monitor dynamic processes. The underlying
problem in these imaging scenarios is often that a fine temporal sampling, i.e. a
large number of channels in the discrete setting, is only possible under considerable
restrictions to sampling density at each time instance. This limitation often ren-
ders time-discrete (static) reconstructions insufficient. Additionally, an underlying
problem in many dynamic applications is given by the specific temporal dynamics
of the process, which are often non-periodic and hence prevents temporal binning
approaches. Thus, it is essential to include the dynamic nature of the imaging task
in the reconstruction process.

With increasing computational resources, it has become more feasible to address
the reconstruction task as a fully dynamic problem in a spatio-temporal setting. In
these approaches, it is essential to include the dynamic information in some form
into the reconstruction task [27]. This could be done for instance by including a
regularisation on the temporal behaviour as penalty in a variational setting [44,
45]. Such approaches have been used in a wide variety of applications, such as
magnetic resonance imaging [18, 39, 46], X-ray tomography [5, 40] and applications
to process monitoring with electrical resistance tomography [10]. More advanced
approaches aim to include a physical motion model and estimate the motion of the
target from the measurements itself. This can be done for instance by incorporating
an image registration step into the reconstruction algorithm and reformulate the
reconstruction problem as a joint motion-estimation and reconstruction task [6, 7,
16, 38]. Another possibility is the incorporation of an explicit motion model by
methamorphsis as considered in [11, 25].

In this work, we consider another possibility to incorporate regularisation, and
in particular temporal regularity, to the reconstruction task by assuming a low-
dimensional representation of the unknown. This leads naturally to a low-rank
description of the underlying inverse problem and is especially suitable to reduce
data size in cases where we have much fewer basis functions to represent the un-
known than the temporal sampling. In a continuous setting, this yields the analysis
of low-rank approximations in tensor product of Hilbert spaces, for which we re-
fer the reader to [30, 50]. We rather focus on low-rank approximation methods
in a discretised framework, which leads to the use of specific matrix factorisation
approaches and their optimisation techniques.

In particular, in this work we propose a joint reconstruction and decomposition
in a variational framework using non-negative matrix factorisation, which naturally
represents the physical assumption of nonnegativity of the dynamic target and al-
lows for a variety of regularising terms on spatial and temporal basis functions.
Following this framework, we propose two algorithms, that either jointly recover
the reconstruction and the low-rank decomposition, or alternatively recovers only
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the low-rank representation of the unknown without the need to construct the full
spatio-temporal target in the reconstruction process. Here, the second approach ef-
fectively incorporates the dimension reduction and can lead under coherent angular
sampling in time to a significant reduction in computational complexity. This can
be particularly useful, if one is only interested in the dynamics of the system and
not the full reconstruction. For incoherent temporal sampling the method effec-
tively aggregates the angular information between time-steps similar to a Bayesian
filtering approach [26]. Finally, the main theoretical result of our paper shows that
a flexible variational framework can be formulated and we prove that the derived
algorithms lead to a monotonic decrease of the respective cost functions.

Reconstruction algorithms for dynamic inverse problems based on low-rank ap-
proximations have been proposed earlier. For instance, by a combination of low-rank
and sparsity constraints [21, 52, 49, 48] based on the idea to decompose the given
data matrix into a sum of two matrices. Here, one matrix has low-rank and models
the stationary background over time and the other matrix is sparse to represent
the temporal variation in space, which is expected to be sparse. Further low-rank
approximation models are based on a trained principal component analysis used for
cine cone-beam CT [22] or patch based low-rank regularisation terms [28]. Simi-
lar to our considered approaches is the work of [8], where a low-rank reconstruction
method is used for the application to cine cone-beam CT, based on a matrix factori-
sation model and the assumption that only a few principle components are sufficient
to reconstruct a given body motion of the patient.

This paper is organised as follows. In Section 2 we discuss our setting for dy-
namic inverse problems and continue to discuss low-rank decomposition approaches.
Specifically, Principal Component Analysis (PCA) and Nonnegative Matrix Factori-
sation (NMF), which is the focus in this study. As a baseline, we first present a
low-rank reconstruction method followed by one of the considered decomposition
methods. We then continue to present the proposed framework of joint reconstruc-
tion and decomposition with the NMF. In particular, we prove that the proposed
framework leads to a monotonic decrease of the cost functions. We then proceed
in Section 3 to evaluate the algorithms under considerations with the use case of
dynamic X-ray tomography and three simulated phantoms with different character-
istics. We conclude the study in Section 4 with some thoughts on the extension of
the proposed framework.

2. Reconstruction and low-rank decomposition methods.

2.1. A setting for dynamic inverse problems. In this work, we consider a
general multi-dimensional inverse problem, where the unknown x(s, t) is defined
on a spatial domain Ω1 ⊂ Rd1 with dependence on a secondary variable t ∈ R≥0

defined in a bounded interval T := [0, T ]. This setting admits some quite general
applications where the secondary variable could have other physical interpreta-
tions, notably wavelength for hyper-spectral problems; however, to fix our ideas, we
henceforth consider t to explicitly represent time, and our application to be that of
dynamic inverse problems. Consequently, the underlying equation of the resulting
inverse problem can be described in the following form

(1) A(x(s, t); t) = y(σ, t) for t ∈ T ,

where A is a time-dependent linear bounded operator between suitable Hilbert
spaces for the functions x : Ω1×T → R≥0 and the measurement data y : Ω2×T →
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R≥0 with domain Ω2 ⊂ Rd2 . We will primarily consider the non-stationary case
here, where the forward operator A is dependent on t.

In the special case of a stationary operator A(·; t) ≡ A for all t ∈ T , where
for each t the operator follows the same sampling process, we can achieve possible
computational improvements. The resulting implications will be discussed later in
Section 2.5.

Furthermore, the underlying assumption in this work is that the unknown x can
be approximated by a set of spatial bk : Ω1 → R≥0 and channel basis functions
ck(t) : T → R≥0 for 1 ≤ k ≤ K. Then, the unknown can be approximated by the
decomposition

(2) x(s, t) ≈
K∑

k=1

bk(s)ck(t).

This formulation naturally gives rise to the reconstruction and low-rank decompos-
tion framework to extract the relevant features given by bk and ck. An illustration
for a possible phantom represented by (2) is shown in Figure 1.

We intentionally keep the formulation general here to allow for applications dif-
ferent to dynamic inverse problems, such as multi-spectral imaging. Nevertheless,
the derived reconstruction and feature extraction framework in this paper will be
used in Section 3 for the specific application to dynamic computed tomography.
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Figure 1. Illustration of a phantom that can be represented by
the decomposition in (2). The phantom consists of K = 3 com-
ponents: the background and two dynamic components with pe-
riodically changing intensity (left and right plot). As such, this
phantom can be efficiently represented by a low-rank decomposi-
tion considered in this study.

Furthermore, a suitable discretisation of the continuous formulation (1) is needed
to introduce the feature extraction methods in the forthcoming sections. Let us first
discretise the secondary variable, such that t ∈ N with 1 ≤ t ≤ T . For the spatial
domain, we assume a vectorised representation such that the resulting unknown can
be represented as a matrix X ∈ RN×T , which leads to the matrix equation

(3) AtX•,t = Y•,t for 1 ≤ t ≤ T,

where At ∈ RM×N is the discretised forward operator, X•,t the t-th column of X
and Y•,t the t-th column of the data matrix Y ∈ RM×T . Analogously, we will write
Mn,• for the n-th row of an arbitrary matrix M.

Suitable restrictions to the matrices in Equation (3) will be made in the following
sections to ensure the applicability of the considered frameworks and, if possible,
to properly represent the decomposition (2).
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2.2. Feature extraction methods. In this section, we introduce two feature ex-
traction methods, namely the Principal Component Analysis (PCA) and the Non-
negative Matrix Factorisation (NMF). These approaches are used to compute the
latent components of the reconstruction X. The NMF will be used in Section 2.4 to
introduce a joint reconstruction and low-rank decomposition framework to tackle
the problem stated in (3).

2.2.1. Principal component analysis. Large and high dimensional datasets demand
modern data analysis approaches to reduce the dimensionality and increase the
interpretability of the data while keeping the loss of information as low as possible.
Many different techniques have been developed for this purpose, but PCA is one of
the most widely used and goes back to [43].

For a given matrix X ∈ RN×T with N different observations of an experiment
and T features, the PCA is a linear orthogonal transformation given by the weights

Ck̃,• = (Ck̃1, . . . , Ck̃T ) with C ∈ RK̃×T , which transforms each observation Xn,• to

principal component scores given by Bnk̃ :=
∑

t XntCk̃t with B = [B•,1, . . . , B•,K̃ ] ∈
RN×K̃ and K̃ = min(N − 1, T ), such that

• the sample variance Var(B•,k̃) is maximised for all k̃,
• each row Ck̃,• is constrained to be a unit vector

• and the sample covariance cov(B•,k, B•,k̃) = 0 for k ̸= k̃.

Together with the usual assumption that the number of observations is higher than
the underlying dimension, this leads to K̃ = T and the full transformation B =
XC⊺, where C is an orthogonal matrix. The t-th column vector (Ct,•)

⊺ defines
the t-th principal direction and is an eigenvector of the covariance matrix S =
X⊺X/(N − 1). The corresponding t-th largest eigenvalue of S denotes the variance
of the t-th principal component.

The above transformation is equivalent to the factorisation of the matrix X given
by

(4) X = BC,

which allows to decompose each observation into the principal components, such

that Xn,• =
∑T

t=1 BntCt,•. Hence, it follows that X =
∑T

t=1 B•,tCt,•.
Furthermore, it is possible to obtain an approximation of the matrix X by trun-

cating the sum at the first K < T principle components for all n, which yields a
rank K matrix X(K) given by

X(K) =

K∑
k=1

B•,kCk,•.

Based on the Eckart-Young-Mirsky theorem [24], X(K) is the best rank K approx-
imation of X in the sense that it minimises the discrepancy ∥X −X(K)∥ for both
the Frobenius and spectral norm.

One typical approach to compute the PCA is based on the Singular Value De-
composition (SVD) of the data matrix X = UΣV ⊺ and will be used in this work.
Setting B := UΣ and C = V ⊺ gives already the desired factorisation in (4) based
on the PCA.

2.2.2. Nonnegative matrix factorisation. Nonnegative Matrix Factorisation (NMF),
originally introduced as positive matrix factorisation by Paatero and Tapper in
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1994 [42], is an established tool to obtain low-rank approximations of nonnega-
tive data matrices. It has been widely used in the machine learning and data
mining community for compression, basis learning, clustering and feature extrac-
tion for high-dimensional classification problems with applications in music analysis
[20], document clustering [15] and medical imaging problems such as tumor typing
in Matrix-Assisted Laser Desorption/Ionisation (MALDI) imaging in the field of
bioinformatics [36].

Different from the PCA approach above, the NMF enforces nonnegativity con-
straints on the factor matrices without any orthogonality restrictions. This makes
the NMF the method of choice for application fields, where the underlying physical
model enforces the solution to be nonnegative assuming that each datapoint can be
described as a superposition of some unknown characteristic features of the dataset.
The NMF makes it possible to extract these features while constraining the matrix
factors to have nonnegative entries, which simplifies their interpretation. These
data assumptions are true for many application fields including the ones mentioned
above but also especially for our considered problem of dynamic computed tomog-
raphy, where the measurements consist naturally of the nonnegative absorption of
photons. Mathematically, the basic NMF problem can be formulated as follows:
For a given nonnegative matrix X ∈ RN×T

≥0 , find nonnegative matrices B ∈ RN×K
≥0

and C ∈ RK×T
≥0 with K ≪ min{N,T} such that

X ≈ BC.

The factorisation allows to approximate the rows Xn,• and columns X•,t as a su-
perposition of the K columns B•,k of B and rows Ck,• of C respectively, such that

Xn,• ≈
∑K

k=1 BnkCk,• and X•,t ≈
∑K

k=1 CktB•,k. Similarly, it holds that

X ≈ BC =

K∑
k=1

B•,kCk,•,

where the K terms of the sum are rank-one matrices. Hence, the sets {B•,k}k and
{Ck,•}k can be interpreted as a low-dimensional basis to approximate X, i.e. the
NMF performs the task of basis learning with additional nonnegativity constraints.

The usual approach to compute the factorisation is to define a suitable discrep-
ancy term DNMF, which has to be chosen according to the noise assumption of the
underlying problem, and to reformulate the NMF as a minimisation problem. Typ-
ical discrepancies include the default case of the Frobenius Norm on which we will
focus on, the Kullback-Leibler divergence or other generalised divergences [12].

Furthermore, NMF problems are usually ill-posed due to the non-uniqueness of
the solution [29] and require the application of suitable regularisation techniques.
One common method is to include penalty terms in the minimisation problem to
tackle the ill-posedness of the problem but also to enforce desirable properties of
the factorisation matrices. Typical examples range from ℓ1, ℓ2 and total variation
regularisation terms [33] to more problem specific terms, which enforce additional
orhogonality of the matrices or even allow supervised classification workflows if the
NMF is used as a prior feature exctraction method [19, 36].

Hence, the general regularised NMF problem can be written as

(5) min
B,C≥0

DNMF(X,BC) +

L∑
ℓ=1

γℓPℓ(B,C) =: min
B,C≥0

F(B,C),
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where Pℓ denote the penalty terms, γℓ ≥ 0 the corresponding regularisation param-
eters and F the cost function of the NMF.

Another crucial step in the whole workflow of the feature extraction via both
the NMF and the PCA is the determination of an optimal number K of compo-
nents. Typical methods are based on approximative or heuristic techniques and
include residual analysis, core consistency diagnostics based on a principal compo-
nent analysis or the investigation of the rank-one matrices B•,kCk,• (see [12] and
the references therein). Following the ideas of [8], this work focuses on the latter
approach, which will be further specified in Section 3.1 and Appendix C.1.

The considered optimisation approach in this work is based on the so-called
Majorise-Minimisation (MM) principle and gives rise to multiplicative update rules
of the matrices in (5), which automatically preserve the nonnegativity of the iterates
provided that they are initialised nonnegative. For more details on this optimisation
technique, we refer the reader to Appendix A. The idea of the feature extraction
procedure based on the NMF can be well illustrated by considering the example
from Figure 1 that satisfies the decomposition assumption from (2). Here, the
highlighted spatial regions change their intensities according to the given dynamics.
The NMF allows a natural interpretation of the factorisation matrices B and C
as the spatial and temporal basis functions for this case, as illustrated in Figure
2. The column X•,t of X denotes the reconstruction of the t-th time step of the
inverse problem in (3). The NMF allows to decompose the spatial and temporal
features of X: The matrix B contains the spatial features in its columns with the
corresponding temporal features in the rows of C.
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Figure 2. Structure of the NMF in the context of the dynamic
Shepp-Logan phantom as shown in Figure 1. Here, the nonnegative
spatial and temporal basis functions can be naturally represented
by the matrices B and C.

2.3. Separated reconstruction and low-rank decomposition. Let us first dis-
cuss a separated reconstruction and feature extraction approach to solve the inverse
problem in (3), which means that first a reconstruction is computed and afterwards
the feature extraction is performed subsequently with one of the previously dis-
cussed methods. We consider this method as baseline for our comparison.
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The considered reconstruction method for this separated framework involves a
basic gradient descent approach together with a regularisation step and a subsequent
total variation denoising, which will be henceforth referred to as gradTV. The details
on the algorithm are provided in Algorithm 1. In particular, we aim to compute
solutions to the least squares problem and incorporate the low-rank assumptions as
additional penalty of the nuclear norm of X•,t, that is

min
X•,t≥0

∥Y•,t −AtX•,t∥22 + α∥X•,t∥∗

for all t; see e.g. [37, 21, 49, 52]. This can then be efficiently solved by a proximal
gradient descent scheme with a soft-thresholding on the singular values enforcing
the low-rank structure. Ideally, one would like to include the total variation reg-
ularisation as penalty term, but as this tends to be computationally expensive for
the fine temporal sampling, we include this as a subsequent denoiser.

In practice, after a suitable initialisation of the reconstruction matrix, the gra-
dient descent step is computed with an, a priori defined, fixed stepsize ρgrad. For
the proximal step, the truncated SVD of X is computed and a soft thresholding
of the singular values is performed with a fixed threshold ρthr. Afterwards, we en-
force the nonnegativity with a projection step on the reconstruction X. When the
stopping criterion is satisfied, a TV denoising algorithm1 based on [23, 48] with the
corresponding parameter ρTV is applied.

Algorithm 1 gradTV

1: Initialise: X
2: Input: ρgrad, ρthr, ρTV > 0
3: repeat
4: X•,t ← X•,t − ρgrad(A

⊺
tAtX•,t −A⊺

t Y•,t) for all t
5: (U,Σ, V )← SVD(X)
6: Σ← SoftThreshρthr

(Σ)
7: X ← UΣV ⊺

8: X ← max(X, 0)
9: until StoppingCriterion satisfied

10: X ← TVDenoiserρTV
(X)

11: return X

After the reconstruction procedure given by Algorithm 1, we perform the feature
extraction of the reconstruction X via both the PCA and the NMF and call the
approach gradTV PCA and gradTV NMF respectively.

For gradTV PCA, we simply compute the PCA of X based on its SVD. Concerning
the method gradTV NMF, we consider the standard NMF model

(6) min
B,C≥0

∥X −BC∥2F +
µ̃C

2
∥C∥2F

with the parameter µ̃C . The ℓ2 regularisaton penalty term on C is motivated by our
application in Section 3. The corresponding multiplicative algorithms to solve (6)
are well-known [13, 19] and a special case of the derived update rules in the next
section.

1
https://www.mathworks.com/matlabcentral/fileexchange/36278-split-bregman-method-for-total-variation-

denoising
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2.4. Joint reconstruction and low-rank decomposition. Instead of the pre-
viously discussed separated reconstruction, we now aim to include the feature ex-
traction into the reconstruction procedure. This gives rise to consider a joint recon-
struction and low-rank decomposition approach based on the NMF, rather than one
based on a low-rank plus sparsity approach based on PCA [9, 47, 53]. The basic
idea of the method is to incorporate the reconstruction procedure of the inverse
problem in (3) into the NMF workflow. To do this, we have to additionally assume

that At ∈ RM×N
≥0 , Y ∈ RM×T

≥0 and X ∈ RN×T
≥0 to ensure the desired nonnegativity

of the factorisation matrices B and C, which corresponds to the assumptions of
the decomposition in (2). The main motivation is that this joint approach allows
the reconstruction process to exploit the underlying latent NMF features of the
dataset, which can therefore enhance the quality of the reconstructions by enabling
regularisation of temporal and spatial features separately.

This can be achieved by including a discrepancy term DIP(Y•,t, AtX•,t) of the
inverse problem into the NMF cost function in (5). This leads together with some
possible penalty terms for the reconstruction X to the model

(7) min
B,C,X≥0

DIP(Y•,t, AtX•,t) + αDNMF(X,BC) +

L∑
ℓ=1

γℓPℓ(B,C,X),

with α ≥ 0 for the joint reconstruction and low-rank decomposition problem, which
we will call BC-X. Furthermore, we can enforce X := BC as a hard constraint
such that the reconstruction matrix will have at most rank K. In this case, the
discrepancy DNMF vanishes and we end up with the model BC:

(8) min
B,C≥0

DIP(Y•,t, At(BC)•,t) +

L∑
ℓ=1

γℓPℓ(B,C).

2.4.1. Considered NMF models. For both models (7) and (8), we use the standard
Frobenius norm for both the discrepancy terms DNMF and DIP. Furthermore, the
optimisation method discussed in Section 2.4.2 allows to include a variety of penalty
terms into the cost function. This makes it possible to construct suitable regularised
NMF models and to enforce additional properties to the matrices depending on
the specific application. For the theoretical part of this work and to show that
the optimisation approach can generalise to various regularisation terms, we will
consider standard ℓ1 and ℓ2 terms on each matrix and an isotropic total variation
penalty on the matrix B. The latter is motivated by our considered application
in Section 3, which denoises the spatial features and thus also the reconstruction
matrix. Hence, we will focus on the following NMF models in the remainder of this
work:

BC-X

min
B,C,X≥0

{
T∑

t=1

1

2
∥AtX•,t − Y•,t∥22 +

α

2
∥BC −X∥2F + λB∥B∥1 +

µB

2
∥B∥2F

+λC∥C∥1 +
µC

2
∥C∥2F + λX∥X∥1 +

µX

2
∥X∥2F +

τ

2
TV(B)

}
,

Inverse Problems and Imaging Volume 16, No. 3 (2022), 483–523
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BC

min
B,C≥0

{
T∑

t=1

1

2
∥At(BC)•,t − Y•,t∥22+λC∥C∥1 +

µC

2
∥C∥2F + λB∥B∥1

+
µB

2
∥B∥2F +

τ

2
TV(B)

}
.

The regularisation parameters α, λC , µC , λB , µB , λX , µX , τ ≥ 0 control the influence
of the different penalty tertms. Furthermore, ∥ · ∥F denotes the Frobenius norm,
∥M∥1 :=

∑
ij |Mij | the 1-norm for matrices M and TV(·) is the following smoothed

isotropic total variation [14, 19, 33].

Definition 2.1. The total variation of a matrix B ∈ RN×K is defined as

TV(B) :=

K∑
k=1

N∑
n=1

√
ε2TV +

∑
ℓ∈Nn

(Bnk −Bℓk)2,

where εTV > 0 is a small positive constant and Nn are index sets referring to
spatially neighboring pixels.

For the rest of this work, we will use the following shorthand notation:

|∇nkB| :=
√
ε2TV +

∑
ℓ∈Nn

(Bnk −Bℓk)2.

A typical example for the neighbourhood of the pixel (0, 0) in two dimensions is
N(0,0) = {(1, 0), (0, 1)} to get an estimate of the gradient components in both direc-
tions of the axes. The parameter εTV ensures the differentiability of the TV penalty
term. This is needed due to the considered MM principle for the optimisation ap-
proach and to avoid singularities in the arising matrices of the derived algorithms,
since TV regularisation typically has the tendency to set first-order differences to
zero (see [41, 14] and Section 2.4.2). This modification leads to a differentiable cost
function for both NMF models in BC and BC-X and allows further possible conver-
gence results of the obtained algorithms as it was done in [14] with a different cost
function. A small choice of εTV > 0 guarantees that TV(·) is close to the “true”
discrete TV penalty.

Note that the ℓ1 penalty term does not lead to any difficulties regarding the
differentiability of the cost function and the used optimisation approach, since both
factorisation matrices B and C are constrained to be nonnegative. This fact be-
comes crucial for the optimisation procedure especially concerning the application
of the MM principle and the construction of suitable surrogate functions based on
the quadratic upper bound principle (see Appendix A.1).

The MM principle gives the needed flexibility to deal with such generalised cost
functions in BC-X and BC together with the non-standard discrepancy term and all
considered regularisation terms. In Appendix B, we provide a detailed derivation of
the algorithms and show that the update rules lead to a monotonic decrease of the
cost functions in BC-X and BC. For the subsequent numerical evaluation in Section
3, the penalty terms of both NMF models will be restricted to the ones which will
be relevant for the considered application.

At this point, we would like to provide a short comparison of the NMF model
in BC and the considered method in the work [8], which introduces a compara-
ble combined matrix factorisation model for the application to cine cone-beam CT
(cine-CBCT). The authors consider a similar discrepancy term as in BC, where each
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column in the matrix product BC corresponds to a cine-CBCT image at a specific
point in time with a corresponding projection angle. Furthermore, their model con-
siders an upper limit for the discrepancy term as a hard constraint and an ℓ2 as
well as a sparsity penalty term on T B with T being a specific wavelet transform,
which allows the reconstruction of the lung motion during a CT measurement based
on the few basis vectors given by the columns in B and the coefficients in C. Dif-
ferent from their approach, we rather focus on PCA approaches and in particular
multiple NMF models together with their nonnegativity constraints to improve the
physical and anatomic interpretation of the features in B. Furthermore, we include
a TV regularisation procedure to denoise the spatial basis functions as well as the
reconstructions in X and show for all joint reconstruction approaches based on
the Algorithms given in Theorem 2.2 and 2.3 the monotone decrease of the cost
function, which constitutes the major theoretical part of this work.

2.4.2. Algorithms. In this section, we present in Theorem 2.2 and 2.3 the multi-
plicative algorithms for the NMF problems in BC-X and BC. As mentioned in Section
2.2.2, the multiplicative structure of the iteration scheme ensures automatically the
nonnegativity of the matrices B and C as long as they are initialised nonnegative.
The derivation of such algorithms in this work are based on the MM principle. The
main idea of this approach is to replace the considered NMF cost function F with
a suitable auxiliary function QF , whose minimisation is much easier to handle and
leads to a monotone decrease of F . Furthermore, specific construction techniques
of these surrogate functions lead to the desired multiplicative update rules, which
fulfill the nonnegativity constraint. We provide a short description of the main prin-
ciples in Appendix A. A more detailed discussion of different construction methods
for various kinds of discrepancy and penalty terms of F can be found in the survey
paper [19].

For better readability, we present here only the main results. A detailed construc-
tion of the surrogate functions as well as derivation of the algorithms for both cost
functions BC-X and BC can be found in Appendix B. Consequently, we will only state
the main results in Theorem 2.2 and 2.3 here. Nevertheless, due to the construction
of a suitable surrogate function for the TV penalty term (see Appendix B and [19]

for more details), we first introduce the following matrices P (B), Z(B) ∈ RN×K
≥0 as

P (B)nk :=
1

|∇nkB|
∑
ℓ∈Nn

1 +
∑
ℓ∈N̄n

1

|∇ℓkB|
,(9)

Z(B)nk :=
1

P (B)nk

 1

|∇nkB|
∑
ℓ∈Nn

Bnk +Bℓk

2
+
∑
ℓ∈N̄n

Bnk +Bℓk

2|∇ℓkB|

 ,(10)

where N̄n is the set of the so-called adjoint neighbourhood pixels, which is given
by the relation

ℓ ∈ N̄n ⇔ n ∈ Nℓ.

The differentiable approximation of the TV penalty term with εTV > 0 ensures that
both matrices P (B) and Z(B) are well-defined for all B ∈ RN×K

≥0 . Furthermore, we
write 1M×N for an M ×N matrix with ones in every entry.

We then obtain the two algorithms for both models under consideration. First for
the BC-X model that jointly obtains the reconstruction X and the decomposition:
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Theorem 2.2 (Algorithm for BC-X). For At ∈ RM×N
≥0 , Y ∈ RM×T

≥0 and initialisa-

tions X [0] ∈ RN×T
>0 , B[0] ∈ RN×K

>0 , C [0] ∈ RK×T
>0 , the alternating update rules

X
[d+1]
•,t = X

[d]
•,t ◦

A⊺
t Y•,t + αB[d]C

[d]
•,t

A⊺
tAtX

[d]
•,t + (µX + α)X

[d]
•,t + λX1N×1

B[d+1] = B[d] ◦ αX [d+1]C [d]⊺ + τP (B[d]) ◦ Z(B[d])

αB[d]C [d]C [d]⊺ + µBB[d] + λB1N×K + τB[d] ◦ P (B[d])

C [d+1] = C [d] ◦ αB[d+1]⊺X [d+1]

αB[d+1]⊺B[d+1]C [d] + µCC [d] + λC1K×T

lead to a monotonic decrease of the cost function in BC-X.

Similarly, for the BC model we obtain the updates rules without constructing the
matrix X during the reconstruction process:

Theorem 2.3 (Algorithm for BC). For At ∈ RM×N
≥0 , Y ∈ RM×T

≥0 and initialisations

B[0] ∈ RN×K
>0 , C [0] ∈ RK×T

>0 , the alternating update rules

B[d+1] = B[d] ◦
∑T

t=1 A
⊺
t Y•,t · (C [d]⊺)t,• + τP (B[d]) ◦ Z(B[d])∑T

t=1 A
⊺
tAt(B[d]C [d])•,t · (C [d]⊺)t,• + µBB[d] + λB1N×K + τB[d] ◦ P (B[d])

C
[d+1]
•,t = C

[d]
•,t ◦

B[d+1]⊺A⊺
t Y•,t

B[d+1]⊺A⊺
tAt(B[d+1]C [d])•,t + µCC

[d]
•,t + λC1K×1

lead to a monotonic decrease of the cost function in BC.

We remind that the derivation is described in Appendix B, which leads to the
update rules in the Theorems above. Due to the multiplicative structure of the
algorithms, zero entries in the matrices stay zero during the iteration scheme and
can cause divisions by zero. This issue is handled via the strict positive initialisation
in both Theorems. Furthermore, very small or high numbers can cause numerical
instabilities and lead to undesirable results. As a standard procedure, this problem
is handled by suitable projection steps after every iteration step [12].

2.5. Complexity reduction for stationary operator. Let us now consider the
case of a stationary operator, i.e. A(·; t) in equation (1) does not change with t.
Then we simply write A or A for the matrix representation in (3). If further the
number of channels T is large, the application of the forward operator represented
a major computational burden per channel. In particular, we make use here of
the assumption T ≫ K, i.e. the number of channels is much larger than the basis
functions for the decomposition. In this case, we can effectively reduce the compu-
tational cost by shifting the application of the forward operator to the spatial basis
functions contained in B. That means, we make essential use of the decomposition
X ≈ BC in the reconstruction task and as such avoid to construct the approxi-
mation to X. Consequently, we will only consider the case of BC here. Since A is
independent from t, the NMF model BC becomes

sBC
min

B,C≥0

{1
2
∥ABC − Y ∥2F + λC∥C∥1 +

µC

2
∥C∥2F + λB∥B∥1

+
µB

2
∥B∥2F +

τ

2
TV(B)

}
.
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To illustrate this, let us consider the update equation in Theorem 2.3 for B,
where we can simplify the first term in the denominator as follows:∑T

t=1 A
⊺A(B[d]C [d])•,t · (C [d]⊺)t,• = A⊺A

∑T
t=1(B

[d]C [d])•,t · (C [d]⊺)t,• = A⊺AB[d]C [d]C [d]⊺.

The other terms in the update rules can be simplified similarly such that we
obtain the following reduced update equations.

Corollary 1 (Algorithm for sBC). For A ∈ RM×N
≥0 , Y ∈ RM×T

≥0 and initialisations

B[0] ∈ RN×K
>0 , C [0] ∈ RK×T

>0 , the alternating update rules

B[d+1] = B[d] ◦ A⊺Y C [d]⊺ + τP (B[d]) ◦ Z(B[d])

A⊺AB[d]C [d]C [d]⊺ + µBB[d] + λB1N×K + τB[d] ◦ P (B[d])

C [d+1] = C [d] ◦ B[d+1]⊺A⊺Y

B[d+1]⊺A⊺AB[d+1]C [d] + µCC [d] + λC1K×T

.

lead to a monotonic decrease of the cost function in sBC.

Finally, the order of application is essential here to obtain the complexity re-
duction. In particular, we implemented the algorithm such that A acts on the
basis functions in B. That means, we compute first the product A⊺AB followed
by multiplication with C. That means, we can expect a reduction of computa-
tional complexity by a factor T/K with the sBC model being especially useful for
dimension reduction under fine temporal sampling.

3. Application to dynamic CT. In the following, we will apply the presented
methods to the use case of dynamic computerised tomography (CT). Here, the
quantity of interest is given as the attenuation coefficient x(s, t) at time t ∈ [0, T ]
on a bounded domain in two dimensions s ∈ Ω1 ⊂ R2. Following the formulation
in (1), the time-dependent forward operator is given by the Radon transform

(11) y(θ, σ, t) := (RI(t)x(s, t))(θ, σ) =

∫
s·θ=σ

x(s, t) ds.

Here, the measurement y(θ, σ, t) consist of line integrals over the domain Ω1 for each
time point t ∈ T and is referred to as the sinogram. This measurement depends on
two parameters, the angle θ ∈ S1 on the unit circle and a signed distance to the
origin σ ∈ R. Consequently, the measurements depend on a set of angles at each
time step I(t) such that (θ, σ) ∈ I(t) at time t, which we will refer to this as the
sampling patterns. In a slight abuse of notation, we will use |I(t)| for the number
of angles, i.e. directions for the line integrals, at each time point.

In the following, we consider two scenarios for the choice of angles in I(t) and
by that defining the nature of the forward operator as discussed in Section 2.1.
In the general case of a nonstationary forward operator, that means the sampling
patterns are time-dependent, we assume that the angles change but the amount of
angles is constant over time |I(t)| ≡ c. Additionally, we will consider the case for
stationary operators, which means in our setting that the set of angles does not
change over time. Hence, this leads to a stationary measurement operator of the
dynamic process in (11) such that we can write I(t) ≡ I(t = 0). We note that even
though the measurement process is stationary, the obtained measurement y(θ, σ, t)
itself is still time dependent.

For the computations, we discretise (11) to obtain a matrix vector representation
as in (3). We will write Rt for the discrete Radon transform with respect to the
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sampling pattern I(t) at time point t, which gives rise to the discrete reconstruction
problem for dynamic CT

(12) RtX•,t = Y•,t for 1 ≤ t ≤ T.

We note that due to the definition of the Radon transform by line integrals, the
matrix Rt ∈ RM×N

≥0 has only nonnegative entries and hence satisfies the assumption
for Theorem 2.2 and 2.3. Furthermore, N denotes here the number of pixels in
the original image and M is given by the product M := |I(t)|nS , where nS is the
number of detection points.

3.1. Results and discussion. For a qualitative evaluation of the proposed NMF
approaches, we consider in the following sections three simulated datasets. Due to
the known ground truth in all cases, we are able to measure the performance of
each method via computing the mean of the Peak Signal to Noise Ratio (PSNR)
and the mean of the Structural Similarity Index Measure (SSIM) [4] over all time
steps for every experiment.

For each dataset, the parameters of all methods are chosen empirically by per-
forming various experiments for a wide range of the considered regularization pa-
rameters. The parameter configuration is selected, which leads to the best results
in terms of quality and stability. For the NMF models of the joint reconstruction
and low-rank decomposition approach, we restrict ourselves to the total variation
penalty term on B to provide some denoising effect on the spatial features and the
ℓ2 penalty on C for the time features, since we expect and enforce smooth changes
in time. We consider the standard case for the TV term with the default pixel
neighbourhood and choose the smoothing parameter εTV = 10−5 relatively small.

Concerning the choice of the number of features K, we follow the heuristic ap-
proach in [8] by analysing the importance of the rank-one matrices B•,kCk,•. As
a first step, K is chosen large enough and the considered algorithms are executed
after the optimal regularisation parameters are found (see Appendix C.2). In such
a way, the algorithm is forced to extract additional unnecessary features, which in
turn can be identified based on the small norm of the rank-one matrices B•,kCk,•.
Following [8], we use in this work the ∞-norm ∥B•,kCk,•∥∞, which is defined as
the maximum absolute row sum of the matrix corresponding to the pixel of the
reconstruction B•,kCk,•, which has the largest absolute sum over time. The plots
of these values together with a short description regarding the choice of K for all
datasets can be found in Appendix C.1.

Furthermore, for both datasets we measure different angles at each time step
based on a tiny golden angle sampling [51] using consecutive projections with in-
creasing angle of φ = 32.039 . . . , such that projection angles are not repeated.
Nevertheless, we remind that we keep the total number of observed angles constant
for each time step.

For all considered approaches, we use the unfiltered backprojection, given by the
adjoint of the Radon transform, applied to the noisy data matrix Y as the initialisa-
tion for the reconstruction matrix X. In case of the NMF approaches, the matrices
B and C are initialised via the SVD of X based on [3]. After the initialisation
and at every iteration of the NMF algorithm, a suitable projection step for small
values is performed to prevent numerical instabilities and zero entries during the
multiplicative algorithm [12].
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The algorithms were implemented with MATLAB® R2019b and run on an
Intel® Core� i7-7700K quad core CPU @4.20 GHz with 32 GB of RAM. The
codes are available online in our GitLab [1].

To this end, we present a summary and short explanation of all considered algo-
rithms in this experimental section in Table 1.

Algorithm Description

BC
Joint reconstruction and feature extraction with the NMF model BC without
constructing X, see algorithm in Theorem 2.3

BC-X
Joint reconstruction and feature extraction with NMF model BC-X and explicit
construction of X, see algorithm in Theorem 2.2

sBC
Joint reconstruction and feature extraction method with NMF model sBC for
stationary operator, see algorithm in Corollary 1

gradTV Low-rank based reconstruction method for X, see Algorithm 1

gradTV PCA
Separated reconstruction and feature extraction with Algorithm 1 and
subsequent PCA computation

gradTV NMF
Separated reconstruction and feature extraction with Algorithm 1 and
subsequent NMF computation based on the model in (6)

Table 1. Summary and short explanation of the considered algo-
rithms in the experimental section.

3.1.1. Shepp-Logan phantom. This synthetic dataset consists of a dynamic two-
dimensional Shepp-Logan phantom with T = 100 and a spatial size of 128×128 (see
Figure 1 for the ground-truth). During the whole time, two of the inner ellipsoids
change their intensities sinusoidally with different frequencies, while the rest of the
phantom remains constant.

In the following, we perform a variety of experiments for |It| ∈ {2, . . . , 12} with
1% and 3% Gaussian noise respectively. For all cases, we choose K = 5 for the
number of the NMF features based on the findings in Appendix C.1.

The other parameters of all methods are determined empirically and are displayed
in Table 3 in Appendix C.2 for both noise levels. The stopping criterion for all
methods is met, if 1200 iteration steps are reached or if the relative change of all
matrices B,C and X goes below 5 · 10−5.

We show first some results for the case with |It| = 6 and 1% Gaussian noise in
Figure 3 for the joint NMF methods and Figure 4 for the separate reconstruction
and extraction. The order of shown features is based on the singular values of B
for gradTV PCA and on the ℓ2-norm of the spatial features for NMF approaches.

In this case, all considered approaches are able to successfully identify the con-
stant and dynamic parts of the dataset and extract meaningful spatial and tempo-
ral features. The extracted spatial features of BC, BC-X and gradTV NMF show very
clearly the dynamic and non-dynamic parts of the Shepp-Logan phantom. However,
the spatial features of gradTV NMF are slightly more blurred and affected by minor
artefacts especially in both dynamic features. This underlines the positive effect of
the separate TV regularisation on the spatial feature matrix B in the joint meth-
ods. In contrast, gradTV PCA is able to identify the main components of the dataset
correctly, but there is a clear corruption of the dynamic features with other parts
from the phantom. Furthermore, all spatial features contain negative parts due to
the non-existent nonnegativity constraint of the gradTV PCA approach which makes
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(a) BC
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(b) BC-X

Figure 3. Results for the dynamic Shepp-Logan phantom consid-
ered in Section 3.1.1 with |It| = 6 angles per time step and 1%
Gaussian noise. Shown are the leading extracted features for the
BC model and for BC-X.
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(a) gradTV PCA
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(b) gradTV NMF

Figure 4. Results for the dynamic Shepp-Logan phantom consid-
ered in Section 3.1.1 with |It| = 6 angles per time step and 1%
Gaussian noise. Shown are the leading extracted features for the
gradTV PCA model and for gradTV NMF.
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their interpretation more challenging. Hence, the additional nonnegativity con-
straint of the NMF methods improves significantly the quality and interpretability
of the extracted components in comparison with the PCA based extraction method.

The temporal features of all methods are clearly extracted and are consistent
with the underlying ground truth of the dataset. However, we note that BC and
BC-X have a slight difficulty to resolve the lower intensity part close to 0, which
is probably caused by the multiplicative structure of the algorithms. The different
magnitudes in the temporal features arise from the soft constraints being applied
on the matrix C and is primarily dependent on the choice of the regularisation
parameter µC of the ℓ2 penalty on C.
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(b) gradTV PCA

Figure 5. Results for the dynamic Shepp-Logan phantom consid-
ered in Section 3.1.1 with |It| = 6 angles per time step and 3%
Gaussian noise. Shown are the leading extracted features for the
BC model and for gradTV PCA.

Similar observations can be made for the case |It| = 6 and 3% Gaussian noise.
We present the reconstructed features in Figure 5 for BC and gradTV PCA only.
The higher amount of noise can be observed especially in the spatial features of
gradTV PCA, whereas it only has a slight effect in the BC model.

Finally, we present the reconstructed features with BC and BC-X in Figure 6 for
|It| = 3, i.e. only three three angles per time step with a noise level of 1%. The major
difference to the previous cases can be seen in the results of the BC model. Here,
the method splits up the dynamics of the right ellipse into two different temporal
features, such that the true dynamics are not retained. However, the BC-X approach
perform remarkably well with respect to the feature extraction despite the rather low
number of projection angles. This might indicate, that enforcing the reconstruction
X to have small data error helps in the BC-X model to stabilise the reconstruction
in highly sparse data settings.
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(a) BC
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(b) BC-X

Figure 6. Results for the dynamic Shepp-Logan phantom consid-
ered in Section 3.1.1 with |It| = 3 angles per time step and 1%
Gaussian noise. Shown are the leading extracted features for the
BC model and for BC-X.

Let us shortly discuss other considered values of |It|, that are not shown here.
First of all, the performance of gradTV PCA and gradTV NMF with respect to the
feature extraction behaves very similar for both noise cases. Besides the above
mentioned drawbacks, both approaches give remarkably consistent results especially
for low number of angles and do not tend as much to split up features like in BC

and BC-X. The latter occurs in different degrees for several numbers of angles. For
1% noise, it occurs for |It| ∈ {3, 7, 8, 10} in BC and for |It| = 10 in BC-X. In
the case of a noise level of 3%, the split-up effect only occurs for |It| = 10 in BC.
However, for |It| = 10, it is possible to partially recover the correct temporal feature
by simply adding up both features. Nevertheless, both approaches provide better
reconstruction quality of X than gradTV as we will discuss in the following.

Quantitative Evaluation. Let us now discuss the quantitative reconstruction quality
for all methods. In Figure 7 and 8, we show the mean PSNR and SSIM of the
reconstructions for 1% and 3% noise over all time steps for all considered numbers
of projection angles. Note that for the NMF model BC-X, we compute the quality
measures for X. The same goes for gradTV, where we only compute the quality
measures of X after the reconstruction procedure independently of the subsequent
feature extraction method. In the case of BC, the reconstruction is computed as
X = BC.

As expected, the reconstruction quality tends to get better if more angles per
time step are considered. More importantly, we see that it is possible to obtain
reasonable reconstructions with just a few projections per time step especially in
the case of the joint reconstruction and feature extraction method via the NMF
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approach. In particular, we reach a stable reconstruction quality already with 5 or
more angles for both joint methods and 1% noise.
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Figure 7. Mean PSNR and SSIM values of the reconstructions
of the dynamic Shepp-Logan phantom considered in Section 3.1.1
with 1% Gaussian noise for different numbers of projection angles.
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Figure 8. Mean PSNR and SSIM values of the reconstructions
of the dynamic Shepp-Logan phantom considered in Section 3.1.1
with 3% Gaussian noise for different numbers of projection angles.

The BC model clearly performs best with respect to the reconstruction quality.
For almost every number of angles, the mean PSNR and SSIM values outperform
the ones of the BC-X and gradTV method for both noise levels. In the case of 3%
noise (see Figure 8) we can see that gradTV performs slightly better than BC-X in
most of the cases in terms of their SSIM values. Still, the mean PSNR values of
gradTV are significantly lower than the ones in BC-X for all numbers of angles. A
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Figure 9. Needed time in seconds for the reconstruction and fea-
ture extraction of the dynamic Shepp-Logan phantom considered
in Section 3.1.1 with 1% Gaussian noise.

selection of reconstructions for the experiments in Figure 7 and 8 are provided as
videos in our GitLab [1].

Note that for BC-X, it is also possible to compute the reconstruction based on
the decomposition B · C instead of the joint reconstruction X in the algorithm.
Interestingly, our experiments showed that the reconstruction quality of B · C is
in almost all cases better than the one of the matrix X itself and also mostly
outperforms the gradTV approach. We believe, that this is due to the stronger
regularising effect on the components B and C, which especially influences the
SSIM.

The computation times for the reconstruction and feature extraction with 1%
noise for all algorithms until the stopping criterion is fulfilled are shown in Figure 9.
As expected, the computation time tends to increase with the number of projection
angles and, considering all methods, ranges approximately from 1 to 5 minutes. For
|It| ≤ 8, the BC-X method is the fastest while it is outperformed by gradTV PCA

for |It| ≥ 9. gradTV NMF and BC needs more time in all experiments compared to
gradTV PCA. The significant temporal difference between BC-X and BC is due to its
higher computational complexity: Owing to the model formulation of BC with the
discrepancy term ∥Rt(BC)•,t − Y•,t∥22, the update rules in Theorem 2.3 for both
matrices B and C contain the discretised Radon transform Rt. This is in contrast
to the BC-X algorithm, where Rt only appears in the update rule of X.

Based on the presented results for the dynamic Shepp-Logan phantom, we can
conclude that the joint approaches BC and BC-X outperform both other methods with
respect to the reconstruction quality and for most cases of the extracted features.
Nevertheless, the models gradTV PCA and gradTV NMF give remarkably consistent
and stable results of the extracted components throughout all numbers of angles.
Furthermore, the nonnegativity constraint of the NMF improves significantly the
interpretability and quality of the extracted spatial features.

Stationary Operator . As we have seen, the computational complexity of the BC

model with the non-stationary operator is clearly higher than for all other cases.
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Thus, let us now consider the possibility to speed up the reconstructions with a sta-
tionary operator, which leads us to the complexity reduced formulation presented
in Corollary 1 as the sBC model. Here, we present similarly to the case above ex-
periments with the same dynamic Shepp-Logan phantom for |It| ∈ {2, . . . , 30} and
1% Gaussian noise, as we primarily aim to illustrate the reduction of the computa-
tional cost. Furthermore, the same hyperparameters and stopping criteria are used
as before.

The reconstructed features for the cases |It| = 6 and |It| = 30 are shown in Figure
10. In particular, comparing the results in Figure 10a to the corresponding results
of BC in Figure 3a, one can immediately see a significant difference between the
extracted spatial features. This is due to the fact that the same projection angles
are used at every time step and leads to the clearly visible individual projection
directions for the stationary model sBC. Consequently, the details in the Shepp-
Logan phantom are not well recovered, such that the extracted constant feature is
significantly inferior to the one of BC. As one would expect, more projection angles
per time step are needed to reconstruct finer details. This effect can be clearly seen
for 30 angles in Figure 10b.

However, all temporal basis functions with sBC for |It| = 6 are remarkably well
reconstructed despite the low number of projection angles. This is also true for the
other considered values of |It|. Moreover, we observe that sBC is able to extract the
correct three main features for every |It| ∈ {2, . . . , 30}.

This behaviour is different from the dynamic case discussed above. The reason
for this is probably based on the different projection directions at every time step
in the dynamic case, which results in directional dependencies of the occurring
reconstruction artefacts in contrast to the stationary case. This can make it difficult
for the NMF to distinguish the main features in the non-stationary case and thus
leads to a more stable feature extraction in the here presented stationary case.

The quantitative measures are shown in Figure 11 for all experiments. Comparing
the computation time of BC with the one of sBC, we obtain a clear speed-up by a
factor of 10–20 with the stationary model. However, as expected, comparing Figure
11b and 11c with the quality measures of BC in Figure 7, one can observe that
significantly more projection angles per time step are needed in the stationary case
to provide a sufficient reconstruction quality. In conclusion, we can say that the
sBC model is especially recommended if one is primarily interested in the dynamics
of the system under consideration, as we could extract the temporal basis functions
stably for all considered angles with |It| ≥ 2.

A selection of the reconstructions are available as video files in our GitLab [1].

3.1.2. Vessel phantom. The second test case is based on a CT scan of a human
lung2, see Figure 12. Here, the decomposition is given by the constant background
and a segmented vessel that exhibits a sudden increase in attenuation followed by
an exponential decay. This could for instance represent the injection of a tracer to
the blood stream.

In contrast to the previous dataset, we perform only selected experiments for
specific choices of noise levels and numbers of projection angles. More precisely, we
present results for 1% Gaussian noise together with |It| ∈ {7, 12} and 3% Gaussian

2The phantom is based on the CT scans in the ELCAP Public Lung Image database: http:

//www.via.cornell.edu/lungdb.html
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(a) |It| = 6
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(b) |It| = 30

Figure 10. Results for the dynamic Shepp-Logan phantom con-
sidered in Section 3.1.1 with a stationary operator and 1% Gaussian
noise. Shown are the leading extracted features with the sBC model
for |It| = 6 angles per time step and |It| = 30.
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Figure 11. Needed time in seconds, mean PSNR and mean SSIM
values of the reconstructions of the dynamic Shepp-Logan phantom
with 1% Gaussian noise for the stationary case sBC and different
numbers of projection angles.

noise with |It| = 12. In all cases, we choose K = 4 NMF features based on the find-
ings in Appendix C.1. Furthermore, the stopping criterion from the experiments
with the dynamic Shepp-Logan phantom is changed for this dataset in such a way,
that the maximum number of iterations is raised to 1400 to ensure sufficient con-
vergence. The choice of the regularisation parameters of all methods are displayed
in Table 4 in Appendix C.

Figure 13 and 14 show the feature extraction results for the noise level of 1%
and |It| = 12, where all approaches are able to extract both the main constant and
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Figure 12. Illustration of the vessel phantom dataset consisting
of T = 100 phantoms of dimension 264 × 264, where the intensity
of the blue highlighted area changes according to blue curve on the
left.
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(b) BC-X

Figure 13. Results for the vessel phantom with |It| = 12 angles
per time step and 1% Gaussian noise. Shown are the leading ex-
tracted features for the BC model and for BC-X.

dynamic component of the underlying ground truth. The order of the features here
is based on a manual sorting.

Similar to the results for the Shepp-Logan phantom in Section 3.1.1, the joint
methods BC and BC-X have difficulties to recover the lower intensities in the temporal
features, whereas gradTV PCA produce slight artefacts in the dynamic spatial feature
due to the missing nonnegativity constraint. In addition, gradTV NMF is able to
recover more details in the vessel compared to the joint approaches. This is due
to the relatively high choice of the total variation regularisation parameter τ in
BC and BC-X to ensure a sufficient denoising effect on the matrix B. The low peak
in the second temporal feature of gradTV NMF is caused by the choice of the ℓ2
regularisation parameter µ̃C .
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(a) gradTV PCA
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(b) gradTV NMF

Figure 14. Results for the vessel phantom with |It| = 12 angles
per time step and 1% Gaussian noise. Shown are the leading ex-
tracted features for the gradTV PCA model and for gradTV NMF.
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Figure 15. Results for the vessel phantom with |It| = 12 angles
per time step and 3% Gaussian noise. Shown are the leading ex-
tracted features for the BC model and for gradTV PCA.

Further experiments show that the quality of the extracted components of BC-X
decreases steadily for lower angles until the main features cannot be identified any-
more for |It| ≤ 8. BC produces inferior results and cannot extract reasonable com-
ponents anymore for |It| ≤ 10.

In comparison, both separated approaches gradTV PCA and gradTV NMF are still
able to extract decent features for |It| = 7. For |It| ≤ 6, the performance of both
methods decreases significantly.
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Similar results for gradTV PCA can be obtained for 3% noise and |It| = 12,
which are shown in Figure 15b. Its constant feature is inferior to the one of BC
in Figure 15a due to the additional nonnegativity constraint of the NMF model.
However, the details of the vessel in the dynamic spatial feature of BC are lost
due to the total variation regularisation and the temporal features are affected by
several disturbances. Further tests with the noise level of 3% showed that both
joint methods are not able to recover the underlying features for |It| ≤ 10, while
the separated approaches gives still acceptable results for |It| = 6.

BC BC-X gradTV

Noise |It| PSNR SSIM PSNR SSIM PSNR SSIM

1% 7 (34.130) (0.9016) 32.969 0.8382 31.463 0.8414

1% 12 35.050 0.9068 33.919 0.8496 34.309 0.8839

3% 12 30.148 0.7484 28.119 0.5708 29.375 0.6698

Table 2. Mean PSNR and SSIM values of the reconstruction re-
sults for the vessel phantom for different noise levels and numbers
of projection angles. Values in brackets indicate that the dynamic
part of the dataset in the corresponding experiment could not be
reconstructed sufficiently well.

The reconstruction quality of the experiments are shown in Table 2. Similar to
the Shepp-Logan phantom, the joint approach BC produces the best results com-
pared to all other methods in terms of the mean PSNR and SSIM values. Further
experiments confirm this observation for 4 ≤ |It| ≤ 11.

However, these observations have to be treated with caution. BC is not able to
recover the dynamics for |It| ≤ 10 and 1% noise. In the case of BC-X, the dynamics
can be reconstructed to some degree within the angle range 9 ≤ |It| ≤ 11, but are
not recognizable anymore for |It| ≤ 8. In the case of 3% Gaussian noise, gradTV is
still able to give acceptable reconstruction results for |It| = 10. For less angles, the
reconstructed dynamics of gradTV get constantly worse until they are not apparent
anymore for |It| ≤ 6.

The computation times of the experiments in Table 2 range approximately from
7 to 15 minutes. The corresponding reconstructions can be found as video files in
our GitLab [1].

3.1.3. Further experiments under violation of model assumptions. In this last part
we will evaluate, if the proposed models are still able to provide useful reconstruction
if the model assumption on the decomposition (2) is not fulfilled. In particular, this
means we consider also spatial movements in the following. Similar to the dataset
in Section 3.1.1, the ground truth in this section is also based on the Shepp-Logan
phantom with T = 100, a spatial size of 128×128 and with the dynamics contained
in the same ellipses. However, the right ellipse changes its intensity while the left
ellipse in this dataset changes its size periodically violating the basic assumption of
the NMF to be reconstructible as a superposition of just a few spatial and temporal
features. Selected time steps of the ground truth are shown in Figure 16.
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(a) t = 1 (b) t = 12 (c) t = 23 (d) t = 34 (e) t = 45

(f) t = 56 (g) t = 67 (h) t = 78 (i) t = 89 (j) t = 100

Figure 16. Selected time steps of the ground truth based on the
dynamic Shepp-Logan phantom used in Section 3.1.3 for the nu-
merical experiments. The dynamic parts of the dataset consist of
the left ellipse, which periodically change its size, and the right
ellipse, which periodically change its intensity.

For this dataset, we perform experiments for |It| ∈ {2, . . . , 12} and 1% Gaussian
noise. As before, the choice of K is based on the ∞-norm of the rank-one matrices
∥B•,kCk,•∥∞. The corresponding details can be found in Appendix C.1. Based
on those findings, we choose K = 3 for BC-X and K = 4 for BC and gradTV NMF.
Furthermore, we perform additional experiments for BC withK = 3 and gradTV NMF

for K = 5. Finally, the same stopping criteria are used as in Section 3.1.1 and the
chosen regularisation parameters can be found in Table 5 of Appendix C.2.

Figure 17 and 18 show the extracted features for 12 angles per time step for
every method with the respective choices of K. The stationary feature as well as
the right ellipse, whose dynamic is only given by a change of intensity, can be well
extracted by every method. Similar to the previous experiments, BC has difficulties
to reconstruct the lower intensities in the temporal features. Furthermore, BC and
BC-X are able to extract the spatial movement of the left ellipse in the form of
spatial features indicating the maximal and minimal spatial expansion of the ellipse
together with their corresponding temporal components. Similar to the split-up
effect in the previous results, BC splits the dynamics of the left ellipse to two different
spatial features while including a slight amount of the dynamics of the right ellipse
in the fourth spatial feature. This approximate decomposition can be attributed to
the variational formulation of the reconstruction problem, where the found solution
does minimise the cost function averaged over time.

Similar results are obtained for gradTV PCA and gradTV NMF in Figure 18. The
main difference is that both methods are able to extract additional spatial and
temporal features for the dynamics of the left ellipse showing the intermediate
states of its movement, which leads finally to better reconstructions of the spatial
movement based on the factorisation B · C.
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(a) BC
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(b) BC-X

Figure 17. Results for the dynamic Shepp-Logan phantom con-
sidered in Section 3.1.3 with |It| = 12 angles per time step and 1%
Gaussian noise. Shown are the extracted features for BC and BC-X

with K = 4 and K = 3 respectively.
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(a) gradTV PCA
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(b) gradTV NMF

Figure 18. Results for the dynamic Shepp-Logan phantom con-
sidered in Section 3.1.3 with |It| = 12 angles per time step and
1% Gaussian noise. Shown are the 5 leading extracted features for
gradTV PCA and all features for gradTV NMF.
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(b) gradTV NMF

Figure 19. Results for the dynamic Shepp-Logan phantom con-
sidered in Section 3.1.3 with |It| = 12 angles per time step and
1% Gaussian noise. Shown are the extracted features for BC with
K = 3 and gradTV NMF with K = 5.

Figure 19 shows some additional experiments for BC and gradTV NMF with K = 3
and K = 5 respectively. Different from the previous results is that BC does not
split up features anymore as it was the case for K = 4 and that the fifth feature of
gradTV NMF leads to further intermediate states regarding the dynamics of the left
ellipse. Hence, an accurate choice of K is highly relevant for the obtained results
of the joint reconstruction and low-rank decomposition approach.

Finally, Figure 20 shows some further quantitative results in terms of the mean
PSNR and SSIM for all considered methods and |It| ∈ {2, 3, . . . , 12}. Similar to the
previous findings in Section 3.1.1, the combined methods BC and BC-X outperform
gradTV in terms of the mean PSNR especially for low number of angles. A selection
of reconstructions is provided as videos in our GitLab [1].

4. Conclusion. In this work, we considered dynamic inverse problems with the as-
sumption that the target of interest has a low-rank structure and can be efficiently
represented by spatial and temporal basis functions. This assumption leaded natu-
rally to a reconstruction and low-rank decomposition framework. In particular, we
concentrated here on the nonnegative matrix factorisation as decomposition because
it exhibits three main advantages:

i.) It naturally incorporates the physical assumption of nonnegativity
ii.) Basis functions are not restricted to being strictly orthogonal and therefore

correspond more naturally to actual components
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Figure 20. Mean PSNR and SSIM values of the reconstructions
of the dynamic Shepp-Logan phantom considered in Section 3.1.3
with 1% Gaussian noise for different numbers of projection angles.

iii.) It allows the flexibility to incorporate separate regularisation on each of the
factorisation matrices

In particular, the last point is of importance, as it allows to consider different
regularisers for spatial and temporal basis functions, and as such can be tailored to
different applications.

We then proposed two approaches to obtain a joint reconstruction and low-rank
decomposition based on the NMF, termed BC-X and BC. Both methods performed
better than a baseline method regarding the quality of the reconstructions, that
computes a reconstruction with low-rank constraint followed by a subsequent de-
composition. In particular, the second BC model has shown to have a stronger
regularising effect on the reconstructed features as well as the reconstruction, which
can be simply obtained as X = BC. We believe this is due to the fact, that only
the decomposition is recovered during the reconstruction without the need to build
the reconstruction X explicitly and hence the resulting features at the end exhibit
a higher regularity. More importantly, if one considers a stationary operator in the
complexity reduced sBC model, we can obtain a considerable computational speed-
up. Even though, due to constant projection angles the spatial basis functions are
not as well recovered as in the non-stationary case, but the temporal features can
be nicely extracted even for as low as 2 angles. This might be especially of interest
in applications, where one is primarily interested in the underlying dynamics of the
imaged target.

Despite the reconstruction principle of the NMF based on a superposition of
just a few extracted features, we have demonstrated in Section 3.1.3, that all con-
sidered methods can still extract meaningful spatial and temporal features if the
model assumptions are violated. Especially the separated methods gradTV PCA

and gradTV NMF were able to reconstruct the spatial movement of the object ade-
quately. We believe that this is partially due to the variational formulation of the
NMF models which provides a solution in average over all time steps. Even though
the presented methods are not primarily designed to reconstruct spatial movements
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in the target, this suggests that a combination with other approaches allowing for
movements could be promising. For instance, optical flow constraints assume bright-
ness consistency in the target [6] or morphological motion models [25] that allow for
a flexible and general model for dynamic inverse problems. At the end, this under-
lines that the appropriate choice of model and hence the employed reconstruction
algorithms depends on the application and needs to be chosen carefully.

Moreover, a more thorough numerical evaluation of the proposed methods on
a clinical dataset would be of interest. Depending on the data, we note that the
number of NMF features K probably needs to be chosen higher than in the case of
the simulated datasets discussed in Section 3. Regarding the a priori choice of the
regularisation parameters, a further useful extension of the presented framework is
the development of methods for making an optimal choice of these parameters.

Finally, further optimisation approaches could be investigated, such as the prox-
imal alternating linearised minimisation scheme described in the recent work [17],
which allows for non-smooth penalty terms. However, it is not clear if the optimi-
sation method can be readily applied to the cost functions in BC and BC-X together
with their non-standard discrepancy terms.
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Appendix A. Optimisation techniques for NMF problems. The majority of
optimisation techniques for NMF problems are based on alternating minimisation
schemes. This is due to the fact that the corresponding cost function in (5) is
usually convex in B and C for fixed C and B respectively but non-convex in (B,C)
together, which yields algorithms of the form

B[d+1] := argmin
B≥0
F(B,C [d]),

C [d+1] := argmin
C≥0
F(B[d+1], C).

Typical minimisation approaches are based on alternating least squares methods,
multiplicative algorithms as well as projected gradient descent and quasi-newton
methods [12]. In this work, we focus on the derivation of multiplicative update rules
based on the so-called Majorise-Minimisation (MM) principle [31]. This approach
allows the derivation of multiplicative update rules for non-standard NMF cost
functions and gives therefore the flexibility to adjust the discrepancy and penalty
terms according to the NMF model motivated by the corresponding application [19].
What is more, the update rules consist only of multiplications and summations of
matrices, which allow very simple implementations of the algorithms and ensure
automatically the nonnegativity of the iterates B and C without the need of any
projection steps, provided they are initialised nonnegative.

A.1. Multiplicative algorithms. The works of Lee and Seung [34, 35] brought
much attention to NMF methods in general and, in particular, the multiplicative
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algorithms, which they derived based on the MM principle for the standard case
with the Frobenius norm and the Kullback-Leibler divergence as discrepancy terms.

The main idea of the MM approach is to replace the original cost function F by
a majorising so-called surrogate function QF , which is easier to minimise and leads
to the desired multiplicative algorithms due to its tailored construction.

Definition A.1 (Surrogate Function). Let Ω ⊂ Rn be an open subset and F : Ω→
R a function. Then QF : Ω×Ω→ R is called a surrogate function or surrogate
of F , if it fulfills the following properties:

i) QF (x, x̃) ≥ F(x) for all x, x̃ ∈ Ω
ii) QF (x, x) = F(x) for all x ∈ Ω

The minimisation step of the MM approach is then defined by the update rule

(13) x[d+1] := argmin
x∈Ω
QF (x, x

[d]),

assuming that the argminx∈ΩQF (x, x̃) exists for all x̃ ∈ Ω. Due to the defining
properties of a surrogate function in Definition A.1, the monotonic decrease of the
cost function F is easily shown:

(14) F(x[d+1]) ≤ QF (x
[d+1], x[d]) ≤ QF (x

[d], x[d]) = F(x[d]).

This principle is also illustrated in Figure 21. Typical construction techniques lead

QF (·, x[d])

1

QF (·, x[d+1])

1

F

1

x

1

x[d]

1

x[d+1]

1

x[d+2]

1

F(x[d])

1

F(x[d+1])

1

F(x[d+2])

1

Figure 21. Illustration of two iteration steps of the MM princi-
ple for a cost function F with bounded curvature and a surrogate
function QF , which is strictly convex in the first argument.

to surrogate functions, which are strictly convex in the first component to ensure
the unique existence of the corresponding minimiser. Furthermore, the surrogates
must be constructed in such a way, that the minimisation in Equation (13) yields
multiplicative updates to ensure the nonnegativity of the matrix iterates. Finally,
another useful property is the separability of QF with respect to the first variable.
This ensures, that QF (x, x̃) can be written as a sum, where each component just
depends on one entry of x and allows the derivation of the multiplicative algorithm
via the zero gradient condition ∇xQF = 0.

One typical construction method is the so-called Quadratic Upper Bound Prin-
ciple (QUBP) [2, 31], which forms one of the main approaches to construct suitable
surrogate functions for NMF problems. Overviews of other construction principles,
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which will not be used in this work, can be found in [31, 32]. The QUBP is described
in the following Lemma.

Lemma A.2. Let Ω ⊂ Rn be an open and convex subset, F : Ω→ R twice contin-
uously differentiable with bounded curvature, i.e. there exists a matrix Λ ∈ Rn×n,
such that Λ−∇2F(x) is positive semi-definite for all x ∈ Ω. We then have

F(x) ≤ F(x̃) +∇F(x̃)⊺(x− x̃) +
1

2
(x− x̃)⊺Λ(x− x̃) ∀x, x̃ ∈ Ω

=: QF (x, x̃),

where QF is a surrogate function of F .

This is a classical result based on the second-order Taylor polynomial and will
not be proven here.

If the matrix Λ is additionally symmetric and positive definite, it can be shown
[19] that the update rule for x according to (13) via the zero gradient condition
∇xQF (x, x̃) = 0 gives the unique minimiser

(15) x∗
x̃ = x̃− Λ−1∇F(x̃).

In this work, we will only apply the QUBP for quadratic cost functions F, whose
Hessian is automatically a constant matrix. For these functions, typical choices of
Λ are diagonal matrices of the form

(16) Λ(x̃)ii :=
(∇2f(x̃) x̃)i + κi

x̃i
,

which are dependent on the second argument of the corresponding surrogateQF (x, x̃).
The parameters κi ≥ 0, are constants and have to be chosen depending on the con-
sidered penalty terms of the NMF cost function.

The diagonal structure of Λ(x̃) ensures its simple invertibility, the separability
of the corresponding surrogate and the desired multiplicative algorithms based on
(13). Hence, the update rule in (15) can be viewed as a gradient descent approach
with a suitable stepsize defined by the diagnoal matrix Λ.

Appendix B. Derivation of the algorithms. In this section, we derive the
multiplicative update rules for the NMF minimisation problems in BC-X and BC.

B.1. Model BC-X.

B.1.1. Algorithm for X. We start first of all with the NMF model BC-X and the
minimisation with respect to X. The cost function of the NMF problem in BC-X for
the minimisation with respect to X reduces to

(17) F(X) :=

T∑
t=1

1

2
∥AtX•,t − Y•,t∥22 +

µX

2
∥X∥2F + λX∥X∥1︸ ︷︷ ︸

=:F1(X)

+
α

2
∥X −BC∥2F︸ ︷︷ ︸

=:F2(X)

by neglecting the constant terms. To apply the QUBP and to avoid fourth-order
tensors during the computation of the Hessians, we use the separability of F1 with
respect to the columns of X, i.e. it can be written as sum, where each term depends
only on the respective column X•,t. Hence, we write

F1(X) =

T∑
t=1

[
1

2
∥AtX•,t − Y•,t∥22 +

µX

2
∥X•,t∥22 + λX∥X•,t∥1

]
=:

T∑
t=1

ft(X•,t).
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We can assume that X contains only strictly positive entries due to the strict
positive initialisations of the multiplicative algorithms. Hence, the functions ft are
twice continuously differentiable despite the occuring ℓ1 regularisation term. The
computations of the gradient and the Hessian of ft are straightforward and we
obtain

∇ft(X•,t) = A⊺
tAtX•,t −A⊺

t Y•,t + µXX•,t + λX1N×1,

∇2ft(X•,t) = A⊺
tAt + µXIN×N ,

where IN×N is the N ×N identity matrix. Choosing κn = λX for all n in (16), we
define the surrogate Qft according to Lemma A.2. It is then easy to see, that

QF1(X, X̃) :=

T∑
t=1

Qft(X•,t, X̃•,t)

defines a separable and convex surrogate function for F1. For F2, we set simply
QF2

(X, X̃) := α/2∥X −BC∥2F , such that we end up with

QF (X,A) := QF1(X,A) +QF2(X,A)

as a suitable surrogate for F. Based on the update rule in (13), we consider the zero

gradient condition ∇XQF (X, X̃) = 0 and compute

∂QF

∂Xnt
(X, X̃) =

∂ft
∂Xnt

(X̃•,t) +
(
Λ(X̃•,t)(X•,t − X̃•,t)

)
n
+

α

2

∂

∂Xnt
∥X −BC∥2F

=
(
A⊺

tAtX̃•,t

)
n
− (A⊺

t Y•,t)n + µXX̃nt + λX

+

(
(A⊺

tAt + µXIN×N )X̃•,t

)
n
+ λX

X̃nt

(Xnt − X̃nt) + α(Xnt − (BC)nt)

= − (A⊺
t Y•,t)n +Xnt

(
A⊺

tAtX̃•,t

)
n
+ µXX̃nt + λX

X̃nt

+ α(Xnt − (BC)nt)

= 0.

Rearranging the equation leads to

Xnt =
(A⊺

t Y•,t)n + α(BC)nt(
A⊺

tAtX̃•,t

)
n
+ µXX̃nt + λX

X̃nt

+ α

.

We therefore have

X•,t = X̃•,t ◦
A⊺

t Y•,t + αBC•,t

A⊺
tAtX̃•,t + (µX + α)X̃•,t + λX1N×1

,

which yields the multiplicative update rule

X•,t ← X•,t ◦
A⊺

t Y•,t + αBC•,t

A⊺
tAtX•,t + (µX + α)X•,t + λX1N×1

based on (13). Note that the correct choice of the matrix Λ together with the κi is
crucial to ensure the multiplicative structure of the algorithm.
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B.1.2. Algorithm for B. The minimisation with respect to B reduces the cost func-
tion in BC-X to

(18) F(B) :=
α

2
∥BC −X∥2F +

µB

2
∥B∥2F + λB∥B∥1︸ ︷︷ ︸

=:F1(B)

+
τ

2
TV(B)︸ ︷︷ ︸

=:F2(B)

and involves the TV regularisation on B of the NMF model. Analogously to the
previous section, we use the separability of F1 and write

F1(B) =
N∑

n=1

[α
2
∥Xn,• −Bn,•C∥2F +

µB

2
∥Bn,•∥22 + λB∥Bn,•∥1

]
=:

N∑
n=1

fn(Bn,•).

By computing the gradients

∇fn(Bn,•) = α(Bn,•C −Xn,•)C
⊺ + µBBn,• + λB1 1×K

∇2fn(Bn,•) = αCC⊺ + µBIK×K

and choosing κk = λB in (16), we define analogously the surrogates Qfn , which
leads to the convex surrogate

QF1
(B, B̃) :=

N∑
n=1

Qfn(Bn,•, B̃n,•)

for F1. The derivation of a suitable surrogate for the TV regularisation term F2 is
based on an approach different from the QUBP and shall not be discussed in detail.
We just state the result and refer the reader for details to [41, 14, 19]. A convex
and separable surrogate function for F2 is given by

(19) QF2
(B, B̃) =

τ

2

K∑
k=1

N∑
n=1

[
P (B̃)nk(Bnk − Z(B̃)nk)

2
]
+ G(B̃),

with the matrices P (B̃), Z(B̃) ∈ RN×K
≥0 defined in (9) and (10) and a function

G depending only on the matrix B̃. Hence, we finally end up with QF (B, B̃) :=

QF1
(B, B̃) +QF2

(B, B̃) as a suitable surrogate for F .
Similar to the computations in the previous paragraph, the zero gradient condi-

tion yields then

∂QF

∂Bnk
(B, B̃) = −α(XC⊺)nk +Bnk

α(B̃CC⊺)nk+µB B̃nk+λB

B̃nk

+ τP (B̃)nk(Bnk−Z(B̃)nk) = 0

and therefore

Bnk = B̃nk ·
α(XC⊺)nk + τP (B̃)nkZ(B̃)nk

α(B̃CC⊺)nk + µBB̃nk + λB + τP (B̃)nkB̃nk

.

Hence, we have the update rule

B ← B ◦ αXC⊺ + τP (B) ◦ Z(B)

αBCC⊺ + µBB + λB1N×K + τP (B) ◦B
.

B.1.3. Algorithm for C. The optimisation with respect to the matrix C can be
tackled analogously with the QUBP and will not be described in detail. In this
case, the cost function can be reduced to well-known regularised NMF problems
[13], which leads to the update rule

C ← C ◦ αB⊺X

αB⊺BC + µCC + λC1K×T
.
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B.2. Model BC. In this section, we discuss the computation of the optimisation
algorithms for the NMF model BC.

B.2.1. Algorithm for B. In this case, the cost function reduces to

F(B) :=

T∑
t=1

1

2
∥At(BC)•,t − Y•,t∥22 +

µB

2
∥B∥2F + λB∥B∥1︸ ︷︷ ︸

=:F1(B)

+
τ

2
TV(B)︸ ︷︷ ︸

=:F2(B)

.

Analogously to the previous cases, we analyze the functions F1 and F2 separately.
The difference is here, that F1 is not separable with respect to the rows of B due to
the discrepancy term and therefore, it is necessary to compute the gradient and the
Hessian of the whole function F1. Hence, the gradient ∇F1(B) is an N ×K matrix
and the Hessian ∇2F1(B) a fourth-order tensor, which are given by their entries

∇F1(B)nk =
T∑

t=1

Ckt (A
⊺
tAt(BC)•,t)n −

T∑
t=1

Ckt (A
⊺
t Y•,t)n + µBBnk + λB,

∇2F1(B)(n,k),(ñ,k̃) =

T∑
t=1

Ck̃tCkt(A
⊺
tAt)nñ + µBδ(n,k),(ñ,k̃),

where δ(n,k),(ñ,k̃) = 1 if and only if (n, k) = (ñ, k̃). The natural expansion of the

quadratic upper bound principle given in Lemma A.2 is the ansatz function

QF1(B, B̃) := F1(B̃) + ⟨B − B̃,∇F1(B̃)⟩F

+
1

2

∑
(n,k)

∑
(ñ,k̃)

(B − B̃)nkΛ(B̃)(n,k),(ñ,k̃)(B − B̃)ñk̃

with the fourth order tensor

Λ(B̃)(n,k),(ñ,k̃) :=


∑

(i,j)∇2F1(B̃)(n,k),(i,j)B̃ij + λB

B̃nk

for (n, k) = (ñ, k̃),

0 for (n, k) ̸= (ñ, k̃),

where ⟨·, ·⟩F denotes the Frobenius inner product.
Taking the same surrogate QF2

for the TV penalty term as in (19), we end up
with the surrogate function

QF (B, B̃) := QF1
(B, B̃) +QF2

(B, B̃)

for F . Its partial derivative with respect to Bnk is given by

∂QF

∂Bnk
(B) = −

T∑
t=1

Ckt (A
⊺
t Y•,t)n +Bnk

∑T
t=1 Ckt

(
A⊺

tAt(B̃C)•,t

)
n
+ µBB̃nk + λB

B̃nk

+ τP (B̃)nk(Bnk − Z(B̃)nk).

The zero-gradient condition gives then the equation

Bnk = B̃nk

( ∑T
t=1 Ckt (A

⊺
t Y•,t)n + τP (B̃)nkZ(B̃)nk∑T

t=1 Ckt

(
A⊺

tAt(B̃C)•,t

)
n
+ µBB̃nk + λB + B̃nkτP (B̃)nk

)
,
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which can be extended to the whole matrix B. Therefore, based on (13), we have
the update rule

B ← B ◦

( ∑T
t=1 A

⊺
t Y•,t(C

⊺)t,• + τP (B) ◦ Z(B)∑T
t=1 A

⊺
tAt(BC)•,t · (C⊺)t,• + µBB + λB1N×K + τB ◦ P (B)

)
.
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(a) Dynamic Shepp-Logan Phantom
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(b) Vessel Phantom

Figure 22. Plots of ∥B•,kCk,•∥∞ withK = 10 in descending order
for the dynamic Shepp-Logan phantom (Figure 22a) and the vessel
phantom (Figure 22b) considered in Section 3.1.1 and 3.1.2 with
1% Gaussian noise and the parameters given in Table 3 and 4. In
the case of gradTV PCA, the ten leading features with respect to
the singular values are considered.
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Figure 23. Plots of ∥B•,kCk,•∥∞ withK = 10 in descending order
for the dynamic Shepp-Logan phantom considered in Section 3.1.3
with 1% Gaussian noise and the parameters given in Table 5. In
the case of gradTV PCA, the ten leading features with respect to
the singular values are considered.
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B.2.2. Algorithm for C. In this case, the cost function is separable with respect to
the columns of C, such that

F(C) :=

T∑
t=1

1

2
∥AtBC•,t − Y•,t∥22 +

µC

2
∥C•,t∥22 + λC∥C•,t∥1 =:

T∑
t=1

ft(C•,t).

Hence, we can split the minimisation into the columns of C to use the standard
QUBP without considering higher order tensors. We compute

∇ft(C•,t) = B⊺A⊺
tAt(BC)•,t −B⊺A⊺

t Y•,t + µCC•,t + λC1K×1,

∇2ft(C•,t) = B⊺A⊺
tAtB + µCIK×K .

By choosing κk = λC for all k in (16), we define Qft(C•,t, C̃•,t) as a surrogate
function for ft according to Lemma A.2. The update rule in (15) gives then

C•,t = C̃•,t − Λ−1(C̃•,t)∇ft(C̃•,t),

which leads to

C•,t ← C•,t ◦
B⊺A⊺

t Y•,t

B⊺A⊺
tAt(BC)•,t + µCC•,t + λC1K×1

.

Appendix C. Parameter choice.

BC BC-X gradTV

Parameter 1% noise 3% noise 1% noise 3% noise 1% noise 3% noise

α – – 70 70 – –

µC 0.1 0.1 0.1 0.1 – –

τ 10 50 6 20 – –

ρgrad – – – – 1 · 10−3 8 · 10−4

ρthr – – – – 7 · 10−4 1 · 10−3

ρTV – – – – 1 · 10−2 2.5 · 10−2

µ̃C – – – – 0.1 0.1

Table 3. Parameter choice of the experiments in Section 3.1.1 for
the dynamic Shepp-Logan phantom for 1% and 3% Gaussian noise.

C.1. Number of features. To determine an optimal number of features K for the
numerical part of this work, we perform experiments with K = 10 for both datasets
as described in Section 3.1. Figure 22 shows the plots of the values ∥B•,kCk,•∥∞
for k = 1, . . . ,K in descending order for BC, BC-X, gradTV PCA and gradTV NMF.

As expected, three main features can be extracted in the case of the dynamic
Shepp-Logan phantom, which is clearly confirmed by the plot in Figure 22a for all
methods. However, for BC-X, several features for k ≥ 4 still have a slight contri-
bution to the overall reconstruction. Together with further experiments for K ≥ 4
leading to more stable and better reconstruction qualities, we choose in the case of
the dynamic Shepp-Logan phantom for the numerical experiments in Section 3.1.1
K = 5 for all methods using the NMF as a feature extraction step.

Similar results are obtained in Figure 22b for the vessel phantom with its two
main spatial and temporal features. In this case, we choose K = 4 for all considered
methods.
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BC BC-X gradTV

Parameter 1% noise 3% noise 1% noise 3% noise 1% noise 3% noise

α – – 3 · 102 3 · 102 – –

µC 1 1 1 1 – –

τ 1.3 · 102 4.3 · 102 90 3 · 102 – –

ρgrad – – – – 2 · 10−4 8 · 10−5

ρthr – – – – 2 · 10−4 2.5 · 10−4

ρTV – – – – 2 · 10−2 4 · 10−2

µ̃C – – – – 0.1 0.1

Table 4. Parameter choice of the experiments in Section 3.1.2 for
the vessel phantom for 1% and 3% Gaussian noise.

Parameter BC BC-X gradTV

α – 70 –

µC 0.1 0.1 –

τ 10 10 –

ρgrad – – 1 · 10−3

ρthr – – 2 · 10−4

ρTV – – 1 · 10−2

µ̃C – – 0.1

Table 5. Parameter choice of the experiments in Section 3.1.3 for
the dynamic Shepp-Logan phantom for 1% Gaussian noise.

Finally, Figure 23 shows the plots of ∥B•,kCk,•∥∞ for the dynamic Shepp-Logan
phantom, which is considered in Section 3.1.3 and illustrated in Figure 16. Based
on this and further experiments, we choose K = 4 for BC and gradTV NMF as well
as K = 3 for BC-X.

C.2. Further parameters.

REFERENCES

[1] S. Arridge, P. Fernsel and A. Hauptmann, Joint reconstruction and low-rank decompo-

sition for dynamic Available online on GitLab: Inverse Problems — Support Code and
Reconstruction Videos, 2021. https://gitlab.informatik.uni-bremen.de/s_p32gf3/joint_

reconstruction_lowrank_decomp_dynamicip.
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