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Fig. 4. Application of the trained network to process an in vivo needle tracking insertion. Conventional reconstructed, deep learning-enhanced and
TV denoised images with subsampling scenarios are shown. The effect on the spatial resolution and image quality improvement of the DL-based
post-processing is quite prominent and outperforms a traditional TV denoising method.

maintained a lower mean error of 0:082±0:125mm, which is
similar to the one obtain with fully sampled images. Further
to this, RMSE had a similar value (0:149 mm) to the fully
sampled data compared to 4× subsampling, which was a 3-
fold higher (4:660 mm). In conventional reconstructions, the
RMSE in the axial dimension (i.e. RMSEz) seemed to have
the bigger contributions in such an error increase (4:316mm),
compared to the RMSEx obtained in the lateral dimension
(1:758mm). With 8× subsampling, the mean localisation error
increased for both conventionally and DL-enhanced images;
however, after the trained network was applied, the mean error
was reduced from 2:224± 9:296 mm to 0:372± 3:650 mm.
Similarly, the RMSE was reduced from 9:553 to 3:666 mm
when the images were passed through the trained network.

B. In vivo data

As a demonstration of the network’s performance on unseen
in vivo data, ultrasonic tracking data from a 22 Gauge needle
with an integrated FOH placed percutaneously into the right
ventricle of a fetal sheep under general anaesthesia were
acquired (Fig. 4). The needle tip was visible in the B-mode
ultrasound images, although obtaining its locations accurately
by visual inspection alone was challenging due to the depth
of the fetus within the uterine cavity of the ewe. When
the trained network was applied, prominent improvements
in spatial resolution and removal of background noise, as
compared to conventional reconstruction, were observed (Fig.
4). In particular, the axial resolution was improved by at

least 1-fold; furthermore, for all full and subsampled data
scenarios, the SECR reached 99.99%. With TV denoising,
there were improvements in the axial resolution relative to
the conventional reconstructions. However, such improvements
were lower compared to the network. Similarly, TV improved
the image quality in conventional reconstructions, although the
achieved SECRs were lower compared to the applied network.

IV. DISCUSSION

We developed a DL framework that comprised a CNN
and synthetic training data to process reconstructed ultrasonic
needle tracking images. This was, to our knowledge, the first
application of DL to processing in vivo ultrasonic needle track-
ing images. Using the framework developed here, constancy
of axial and lateral resolution across depth was achieved with
subsampling up to 8× fewer transmissions for tracking. This
result will lead directly to faster ultrasound imaging using
frames that are interspersed with the more rapidly-acquired
tracking frames.

The use of synthetic data is beneficial within the context
of ultrasonic tracking, as it removes the burden of acquiring
experimental data with manual annotation. Apart from being
time-consuming, manual annotation introduces a further chal-
lenge to accurately identify the needle tip when there can be
low visibility and uncertainty about its true location; defining
a ground truth in ultrasonic tracking methods remains an open
problem [5].

In contrast to other studies that localise the needle tip or
reconstruct the image directly from channel data, we chose to
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formulate the learning task in the image domain for several
reasons. First, the SNR of the reconstructed image is expected
to be higher. This follows from the fact that the noise ampli-
tude after reconstruction is preserved, but the reconstructed
point source (i.e. needle tip) is a sum over the measured
signals [52]. Second, by formulating the learning task in image
domain, we benefit from essential properties of a CNN, namely
translation invariance and independence of image size.

Compared to conventional tracking image reconstruction
[6], [9], the framework presented here has strong potential to
improve needle identification. Using synthetic testing images
from 8× subsampled channel data, the percentage of cases in
which the FWHM could not be measured due to poor SNR was
significantly reduced. Processing of in vivo tracking images
using Deep Learning outperformed the classical TV denoising
framework, both in terms of image quality (spatial resolution
and SECR) and computation time.

There are several ways in which this work can be extended.
First, the generation of synthetic data assumed a homoge-
neous non-attenuating medium with single sound speed for
ultrasound wave propagation and detection. Variations in the
acoustic attenuation and the sound speed of the imaged
medium to improve robustness could readily be incorporated
using k-Wave, and into the synthetic training dataset. Sec-
ond, the current framework may enhance out-of-plane signals
that could correspond to a false needle tip position. Further
studies to assess the impact of reflection and diffraction from
hyperechoic structures such as bone [44] and brachytherapy
seeds [57] are required. Third, the robustness of needle tip
tracking could be improved by incorporating multiple tracking
frames, for instance by recurrent neural networks or a filter-
ing approach in a Bayesian framework. Fourth, the current
framework could be extended to localise multiple point sources
[44] for systems with multiple ultrasonic sensors. Finally, to
calculate the localisation accuracy directly to in vivo tracking
images, the ground truth of needle tip location data could be
obtained with the use of motorised stages [9].

The Deep Learning framework presented in this study has
strong potential to improve the frame rate and needle tip
identification accuracy in ultrasound tracking. This combi-
nation of improvements will have broad applicability across
multiple clinical fields, leading to improvements in procedural
efficiency and reductions in the risk of complications.
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