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Abstract— Diffuse optical tomography (DOT) utilises
near-infrared light for imaging spatially distributed optical
parameters, typically the absorption and scattering coef-
ficients. The image reconstruction problem of DOT is an
ill-posed inverse problem, due to the non-linear light propa-
gation in tissues and limited boundary measurements. The
ill-posedness means that the image reconstruction is sen-
sitive to measurement and modelling errors. The Bayesian
approach for the inverse problem of DOT offers the possibil-
ity of incorporating prior information about the unknowns,
rendering the problem less ill-posed. It also allows marginal-
isation of modelling errors utilising the so-called Bayesian
approximation error method. A more recent trend in image
reconstruction techniques is the use of deep learning,
which has shown promising results in various applications
from image processing to tomographic reconstructions.
In this work, we study the non-linear DOT inverse prob-
lem of estimating the (absolute) absorption and scattering
coefficients utilising a ‘model-based’ learning approach,
essentially intertwining learned components with the model
equations of DOT. The proposed approach was validated
with 2D simulations and 3D experimental data. We demon-
strated improved absorption and scattering estimates for
targets with a mix of smooth and sharp image features,
implying that the proposed approach could learn image
features that are difficult to model using standard Gaussian
priors. Furthermore, it was shown that the approach can be
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utilised in compensating for modelling errors due to coarse
discretisation enabling computationally efficient solutions.
Overall, the approachprovided improved computation times
compared to a standard Gauss-Newton iteration.

Index Terms— Deep learning, convolutional neural net-
works, diffuse optical tomography, absolute imaging.

I. INTRODUCTION

D IFFUSE optical tomography (DOT) utilises boundary
measurements of near-infrared light to estimate spatially

distributed optical absorption and scattering parameters in
biological tissues [1]–[3]. The distribution of these optical
parameters is useful in obtaining information on tissue func-
tion and structure with applications, for example, in imaging
of breast cancer [4], [5], prostate imaging [6], [7], neonatal
brain imaging [8], functional imaging of the adult brain [9],
[10], and pre-clinical small animal imaging [11].

The image reconstruction problem of DOT, is an ill-
posed inverse problem. The ill-posedness means that even
small errors in measurements or modelling can cause large
errors in the image reconstruction. An established strategy
to handle the ill-posedness of DOT image reconstruction
has been to use regularisation techniques. These techniques
utilised assumptions such as smoothness of the solution [12],
sparsity [13], [14], or its derivative (total-variation) [15] to
obtain stable inversion. In a similar manner, Bayesian estima-
tion utilises prior probability distributions of the unknowns,
based on previously available knowledge, to compute the
posterior probability distribution as a solution to the inverse
problem [16]–[18]. In this regard, the Bayesian approximation
error (BAE) approach has become a standard computational
technique in ill-posed inverse problems such as DOT [17],
[19]. The BAE approach computes statistics of modelling
errors, such as reduced model or uncertainties, to compensate
these during the solution of the inverse problem, for exam-
ple [19]–[22]. For more information on image reconstruction
problem of DOT and various methodologies, see e.g. [3], [9],
[13], [18], [23] and the references therein.

Recently, deep learning methods have shifted the focus
of tomographic imaging from classical, purely model-based
techniques to data-driven approaches. A significant influence
of these techniques has been the availability of large mea-
surement databases, advances in computing capabilities and
the potential to learn image features from the data itself.
These have led to major improvements for many linear inverse
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problems, where high quality reference reconstructions can be
readily obtained. Most notably, these include X-ray computed
tomography [24]–[26], magnetic resonance imaging [27]–[29]
and photoacoustic tomography [30]–[32].

For non-linear inverse problems and in particular in DOT,
deep learning methods are scarce. This can be explained in
parts by the difficulty to obtain high quality training data,
costly model evaluations, and limitations of direct reconstruc-
tion approaches. Therefore, the initial applications of deep
learning methods for DOT have been based on directly learn-
ing a non-linear mapping from the boundary measurement data
to the spatially distributed optical coefficients [33]–[35] where
the reconstruction operator was learned either by classical
neural networks [33] or using convolutional neural networks
(CNNs) [34], [35]. The approach was utilised in estimating
absolute absorption coefficients [33], difference scattering
coefficients [34], and spatially-constant values of both the
coefficients [35]. The methods were validated with simu-
lations [33], [34] and with two homogeneous experimental
phantoms [35]. Improved estimates in terms of estimation
accuracy and computation time were reported.

In contrast to directly learning a reconstruction operator,
one can combine deep learning with model-based approaches.
This can offer the possibilities to overcome some inherent lim-
itations of the learning-based approaches, such as biases due
to training samples and need for large training datasets [30].
Furthermore, model-based approaches are improved by pro-
viding complementary prior information and information on
model uncertainties by training neural-networks to learn image
features from a database of target images. A straightforward
possibility to include the model equations into the reconstruc-
tion is to utilise CNNs as a post-processing tool after an initial
reconstruction is obtained, for instance by removing streak-
ing artefacts from filtered back-projection in computerised
tomography [24], [25] or sharpening D-bar reconstructions
in electrical impedance tomography [36], [37]. Alternatively,
an architecture to invert the Lippmann-Schwinger equation
for difference imaging of absorption coefficients in DOT was
developed in [38].

In this work, we follow the approach of iterative
model-based techniques [26], [28], [30] where learned com-
ponents, given for instance by a CNN, are intertwined with
the model equation. In particular, we extend the iterative
model-based approach in [30] for solving an inverse prob-
lem with a non-linear forward operator. This enables us to
tackle the absolute imaging problem of reconstructing both
absorption and scattering coefficients in DOT. The image
reconstruction problem is solved with a Gauss-Newton algo-
rithm augmented with deep learning. To our knowledge, this
is the first study of simultaneous reconstruction of absolute
absorption and scattering parameters in DOT utilising deep
learning. The use of the iterative model-based learning was
chosen because of 1) non-linearity of the inverse problem,
2) to emphasise generalisability of the inversion method, and
3) to learn non-trivial features of images that are difficult
to account for using conventional regularisation methods or
Gaussian priors. In this approach, model correction is per-
formed implicitly by the network while computing the iterative

updates. As such, model-based estimates are enhanced by
learned CNN components to obtain more accurate estimates.
Further, learning the step length selection parameter, required
for updating the estimates in each iteration, provides an
accelerated iteration.

The rest of the paper is organised as follows. An intro-
duction to DOT, Bayesian approach to inverse problems, and
the proposed model-based learning approach is presented in
Sec. II. Implementation of the proposed approach is presented
in Sec. III. The numerical simulations and experiments are
described in Secs. IV and V. These are followed by discussion
in Sec. VI and conclusions in Sec. VII.

II. METHODS

A. Diffuse Optical Tomography

In a typical DOT measurement setup, near-infrared light
is introduced into an object from its boundary. Let � ⊂
R

d , (d = 2 or 3) denote the domain with boundary ∂� where
d is the (spatial) dimension of the domain. In a diffusive
medium, like soft biological tissue, the commonly used light
transport model for DOT is the diffusion approximation to
the radiative transfer equation [39]. Here, we consider the
frequency-domain version of the diffusion approximation [1]�
−∇ · 1

d(μa(r)+ μ�s(r))
∇ + μa(r)+ jω

c

�
�(r) = 0, r ∈ �,

(1)

�(r)+ 1

2ζ

1

d(μa(r)+ μ�s(r))
α
∂�(r)

∂ n̂
=

⎧⎨
⎩

q

ζ
, r ∈ s

0, r ∈ ∂� \ s,

(2)

where �(r) is the photon fluence, μa(r) is the absorption
coefficient, μ�s(r) is the (reduced) scattering coefficient, j is
the imaginary unit, ω is the angular modulation frequency
of the input signal and c is the speed of light in the medium.
The parameter q is the strength of the light source at location
s ⊂ ∂�, operating at angular modulation frequency ω. Further,
the parameter ζ is a dimension-dependent constant (ζ = 1/π
when � ⊂ R

2, ζ = 1/2 when � ⊂ R
3) and α is a parameter

governing the internal reflection at the boundary ∂�, and
n̂ is an outward unit vector normal to the boundary. The
measurable data on the boundary of the object, exitance 	(r),
is given by

	(r) = − 1

d(μa(r)+ μ�s(r))
∂�(r)

∂ n̂
= 2ζ

α
�(r). (3)

The numerical approximation of the forward model (1)-(3)
is typically based on a finite element (FE) approximation [1].
In the FE-approximation, the domain� is divided into Ne non-
overlapping elements joined at Nn vertex nodes. The photon
fluence in the finite dimensional basis is given by

�h =
Nn�

k=1

φkψk(r) (4)

where ψk are the nodal basis functions of the FE-mesh and
φk is photon fluence in the nodes of the FE-mesh. We write
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the finite dimensional approximations for μa(r) and μ�s(r) as

μa(r) ≈ μh
a (r) =

Nn�
l=1

μa,lψl (r) (5)

μ�s(r) ≈ μ
�h
s (r) =

Nn�
l=1

μ�s,lψl(r) (6)

where μa,l , μ�s,l denote the absorption and scattering at the
nodes of the FE-discretisation.

Typical data types for frequency-domain DOT are the log-
arithm of amplitude and phase, which is obtained from the
real and imaginary parts of the logarithm of complex exitance
	 = A exp(iφ), as

y =
�

Re log(	)
Im log(	)

�
=

�
log(A)
φ

�
, (7)

where y ∈ R
Nm is the data vector, A is the amplitude and φ is

the phase delay of the measured signal. The FE-approximation
of (1)–(3) and (7) is denoted by Ah and the observation model
is written as

y = Ah(μa, μ
�
s) + e (8)

where e ∈ R
Nm models the random noise in measurements,

μa = [μa,1, . . . , μa,Nn] ∈ R
Nn and μ�s = [μ�s,1, . . . , μ�s,Nn

] ∈
R

Nn are discretised absorption and scattering coefficients. The
sub index h in the mapping Ah is a mesh parameter controlling
the level of discretization. The operator Ah(μa, μ

�
s) converges

to the continuous forward operator as h → 0 and Nn →∞.

B. Bayesian Estimation

In the Bayesian approach to inverse problems, all the
parameters are considered as random variables and the uncer-
tainties of their values are encoded into probability density
models [17]. Let us consider the observation model (8). The
solution of the inverse problem is the posterior probability
density which is obtained through Bayes’ theorem, and can
be written as

π(μa, μ
�
s|y) ∝ π(y|μa, μ

�
s)π(μa, μ

�
s) (9)

where π(y|μa, μ
�
s) is the likelihood density and π(μa, μ

�
s) is

the prior density.
Since we aim at computationally efficient solutions,

we compute point estimate(s) from the posterior density, the
most typical choice being the maximum a posteriori (MAP)
estimate. Assuming that the unknowns μa and μ�s and noise e
are mutually independent and Gaussian distributed, i.e.

μa ∼ N (ημa , 	μa ), μ
�
s ∼ N (ημ�s , 	μ�s), e ∼ N (ηe, 	e),

where ημa , ημ�s and ηe are the means, and 	μa , 	μ�s and 	e are
the covariance matrices, the MAP estimate is obtained as

(μ̂a, μ̂
�
s) = arg min

μa,μ�s

�		Le(y − Ah(μa, μ
�
s)− ηe)

		2

+ 		Lμa (μa − ημa )
		2 + 		Lμ�s(μ

�
s − ημ�s)

		2



(10)

where LT
μa

Lμa = 	−1
μa
, LT

μ�s
Lμ�s = 	−1

μ�s
and LT

e Le = 	−1
e .

The mimisatisation problem can be solved using an iterative

method, such as Gauss-Newton method with iteration of the
form

(μ̂a, μ̂
�
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�
s)i + si (δμ̂a, δμ̂

�
s)i (11)
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�
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�
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�
+	−1

μa

�
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μ�s

�
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��
(12)

and si is the step length parameter. Here Jacobian Ji is
the discrete representation of the Fréchet derivative of the
non-linear mapping Ah(μ̂a,i , μ̂

�
s,i ) at the current iterate.

C. Prior

In this work, we use the following two Gaussian forms as
our prior distributions for absorption and scattering.

1) Gaussian Ornstein-Uhlenbeck Prior: To model smooth
parameter distributions, we chose the prior model for the
unknown parameters (10) as the Ornstein-Uhlenbeck process,
which belongs to the Matérn class of covariance func-
tions [40]. Ornstein-Uhlenbeck prior is a Gaussian distribution
with the covariance matrix 	 defined as

	μ,mk = σ 2
μ exp



− �rm − rk�

�

�
(13)

where μ denotes the unknown parameters (absorption and
scattering), σμ is the standard deviation, rm and rk are the
locations of the FE-discretisation nodes m and k, and �
is the characteristic length scale which controls the spatial
range of correlation. The prior supports correlation between
neighborhood discretization points, promoting distributions
that can be locally close to homogeneous.

In this work, the means of the prior were ημa = 0.01 mm−1

and ημ�s = 1 mm−1, and the standard deviations were σμa =
0.0033 mm−1 and σμ�s = 0.33 mm−1. The correlation length
was � = 8 mm.

2) Gaussian Sample-Based Prior: For targets which con-
sisted of both non-smooth and smooth features, Gaussian
sample-based priors were constructed using a set of sample
images {μa, μ

�
s} j , j = 1, . . . , Nsamp. The prior means and

covariances were computed as

ημ = 1

Nsamp

Nsamp�
i=1

μ j (14)

	μ = 1

Nsamp − 1

Nsamp�
i=1

(μ j − ημ)(μ j − ημ)T. (15)

D. Bayesian Approximation Error Method

In practical applications, the use of a sufficiently dense
discretization may be infeasible due to computational resource
and time limitations. In such a case, the observation model (8)
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Fig. 1. Diagram of one CNN denoted as Gθi , representing one iteration of the deep Gauss-Newton. The red arrows denote a convolutional layer
with 5×5 kernel for a 2D image (or 5×5×5 kernel for a 3D image), bias and followed by a LReLU. The resulting channels in each layer are indicated
in the squares. The blue arrow denotes a convolutional layer followed by a scalar multiplication. The residual update (by the skip connection) is then
projected to the positive numbers by the last LReLU (shown as green arrow).

with a forward operator with a fine discretisation is replaced
by an approximate model

y = AH (μ̄a, μ̄
�
s)+ e (16)

where the discretization parameter H > h and (μ̄a, μ̄
�
s) are the

corresponding discretised optical coefficients with discretisa-
tion H . In the Bayesian approximation error approach, instead
of just using the approximate model (16) we re-write the
observation model (8) in the following way

y = AH (μ̄a, μ̄
�
s)+ {Ah(μa, μ

�
s)− AH (μ̄a, μ̄

�
s)}� �� �

ε

+e. (17)

Here, ε is the discretisation error describing the discrepancy
between the accurate forward model and the approximate
model. The Bayesian approximation error method carries out
an approximate marginalisation of the posterior over the error
ε. Following [17], [19], the MAP estimate with the Bayesian
approximation error model is obtained as

( ˆ̄μa, ˆ̄μ�s) = arg min
μa,μ�s

�		Lε+e(y − AH (μ̄a, μ̄
�
s)− ηε − ηe)

		2

+ 		Lμa (μ̄a − ημa )
		2 + 		Lμ�s(μ̄

�
s − ημ�s)

		2



(18)

where ηε and 	ε are the mean and covariance of the approx-
imation error. Further, LT

ε+e Lε+e = (	ε + 	e)
−1. In the

following sections, we refer to the solution of (18) as the
MAP estimate with the Bayesian approximation error (BAE)
approach.

E. Model-Based Learning Using Deep Gauss-Newton

In this work, instead of the regular Gauss-Newton update,
Eq. (11), we propose to learn an update function for each
iteration

(μ̂a, μ̂
�
s)i+1 = Gθi ((μ̂a, μ̂

�
s)i , (δμ̂a, δμ̂

�
s)i ). (19)

The functions Gθi correspond to CNNs with different, learned
parameters θi but with the same architecture. This implies
that the update of the optical parameters including the step
length selection is now learned from the data during training.
The network structure is kept simple and shown in Fig. 1.
Due to the representation of each update by a CNN applied
to the optical parameters (μ̂a, μ̂

�
s)i the Gauss-Newton search

directions (δμ̂a, δμ̂�s)i , we refer to the algorithm as a deep

Gauss-Newton (DGN). In contrast to the previously proposed
model-based learning technique for DOT difference imaging
in Reference [38], we train the DGN layer by layer (layer
corresponding here to one iterate), due to the non-linear
nature of the absolute imaging problem. Hence, we learn the
parameters θi for each iteration separately.

III. IMPLEMENTATION

The Toast++ software [41] was utilised in the FE-solution
of the diffusion equation using MATLAB (R2017b, Math-
works, Natick, MA). A Python library, Tensorflow (version
1.14.0) [42] was utilised in implementation and training of the
DGN algorithm. The simulations, were carried out in a Fujitsu
Celcius W550 desktop workstation, with Intel®Xeon(R)
W-2125 CPU @ 4.00GHz×8. The training of the DGN were
carried out on a NVIDIA Tesla V100 GPU.

A. Implementation of the Deep Gauss-Newton

The architecture chosen for the CNNs performing the update
in Eq. (19) is illustrated in Fig. 1. In each iteration, optical
coefficients and the corresponding search directions are given
as an input to a pipeline. They are expanded to 20 and then 40
channels by a convolutional layer with kernel size of 5 pixels,
and dimension d = 2 or 3, including bias and equipped with a
‘leaky’ rectified linear unit (LReLU) as non-linearity, that was
defined as

LReLU(μ) = max(μ, 0.1μ).

As opposed to commonly used ReLU, the use of LReLU allow
for negative values of input parameters (δμ̂a, δμ̂

�
s). The num-

ber of channels represent the number of images that are output
after each convolution and non-linear operations, representing
the number of image variations to be learned. The expansive
part of the network serves as a feature extractor (encoder) and
the contracting part feature fusion (decoder). The kernel size
is the pixel size on which the convolution filters are applied,
and relates to the size of spatial variations to be learned.
The outputs of the pipelines are added together, and first
reduced to 20 channels, equipped with a LReLU, and then to 1
channel without a non-linearity, but multiplication to a scalar
value (representing the step length parameter si ). The outcome
is added to the current iterate and projected to the positive
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numbers by a LReLU. Before applying the network, the optical
parameters (μa, μ

�
s) were scaled (μa �→ 102 × μa, μ

�
s �→ μ�s)

to present values in the same numerical range.
Since the main contribution of this work is not the specific

neural network architecture, we used a simple architecture
following Reference [30]. As shown, the network structure is
kept rather small with the idea that each Gθi primarily learns
how to combine the current iterate parameters and the search
directions, in contrast to a large post-processing network.

B. Training the Deep Gauss-Newton

The network was trained by simulations utilising absorp-
tion and scattering distributions, i.e. ‘ground-truth images’,
drawn from a prior {μa,true, μ

�
s,true} j , j = 1, . . . , Nsamp

and corresponding simulated measurement data. The data
was simulated using a FE-approximation of the diffusion
approximation (1)-(3) and it was corrupted with additive noise.
Since CNNs operate on uniform pixel domains, the images
drawn in the mesh basis were interpolated to the image
basis for the application of the CNN and back for simulation
of (1)-(3). Alternatively, one can use graph structures to
formulate the problem on the FE mesh directly [43].

The parameters θi for i = 1, . . . , imax, were trained sequen-
tially, where imax was the maximum number of iterations. The
parameters were trained on each iteration i by minimising the
‘L2-loss’ function

min
θi

�
j

�μ j
a,i+1 − μ j

a,true� + �μ� js,i+1 − μ� js,true�, (20)

where μ
j
i+1 at an iterate was given by Eq. (19). For the

iteration, the initial guess, μ j
1 was chosen as the mean of prior.

Thereafter, θ1 was trained to minimise the difference between
μ

j
true and μ j

2 (computed using Eq. (19)) for all indices j . The
procedure was repeated to train all θi ’s. In this work, imax was
chosen as 5, which has been a typical number of iterations
required for convergence of Gauss-Newton iterations in DOT
absolute imaging according to our experience. Training of the
θi ’s was carried out by minimising (20) with the TensorFlow’s
implementation of the Adam optimiser [44] using batches of
size 2, maximum of 10 epochs and step size of 5 · 10−4

(learning rate). The estimate μ j
i+1 at an iterate approaches

the accurate solution when trained to a sufficiently low loss.
The training was terminated when the change of average
L2-loss (20) was less than 0.1% between two consecutive
epochs.

The training procedure is aimed to improve the conventional
update of optical parameters (12) based on image features
learned from the training samples. These image features and
the step length selection are encoded in the learned parameters
θi . The training procedure is summarised in Algorithm 1.

C. Evaluating the Deep Gauss-Newton

After training the parameter sets θi , the learned iterative
reconstruction scheme was evaluated by applying the net-
work Gθi at each iteration. This procedure was equivalent
to Algorithm 1, starting by setting (μ̂a, μ̂

�
s)1, calling function

‘ITERATE’, and skipping the function ‘TRAIN’.

Algorithm 1 Training the Deep Gauss-Newton

1: Draw set {μa,true, μ
�
s,true} j , j = 1, . . . , Nsamp, from prior.

2: Generate noisy measurement data using Eq. (8).
3: Set (μ̂a, μ̂

�
s)

j
1 as mean of prior (10), for Nsamp cases.

4: function ITERATE

5: i ← 1
6: while i < imax do
7: Compute (δμ̂a, δμ̂

�
s)

j
i , using Eq. (12) for Nsamp

cases.
8: function TRAIN((μ̂a, μ̂

�
s)

j
i , (δμ̂a, δμ̂

�
s)

j
i , (μa,true,

μ�s,true)
j )

9: Train θi ’s by minimizing Eq. (20)
10: end function Return θi

11: (μ̂a, μ̂
�
s)i+1 ← Gθi ((μ̂a, μ̂

�
s)i , (δμ̂a, δμ̂

�
s)i ).

12: i ← i + 1
13: end while
14: end function

IV. SIMULATIONS

A. Data Generation

In the numerical studies, the domain � ⊂ R
2 was a circle

with a radius of 35 mm. The measurement setup consisted of
16 sources and 16 detectors modelled as 2 mm wide surface
patches located at equi-spaced angular intervals on the bound-
ary. The target optical parameters were either drawn from
the Gaussian Orstein-Uhlenbeck prior, as shown in Fig. 2 (a),
or drawn as a mix of smoothly varying background (drawn
from the Orstein-Uhlenbeck prior) and sharp circular inclu-
sions with varying contrast and radii, as shown in Fig. 2 (b).
The optical parameter values were chosen to mimic those in
biological tissues [45].

The measurement data were simulated using the
FE-approximation of the diffusion approximation (1)-(3),
using a ‘forward mesh’ shown in Fig. 3 (a). Random
measurement noise e drawn from a zero-mean Gaussian
distribution

π(e) = N (0, 	e), 	e = diag(σ 2
e,1, . . . , σ

2
e,Nm

), (21)

where the standard deviations σe,k were specified as 1% of the
simulated noise-free data, was added to the simulated data.

B. Estimation

Estimation of the optical parameters was first carried out
in a ‘2D mesh 1’, shown in Fig. 3 (b). ‘Forward mesh’ and
‘2D mesh 1’ had a similar level of discretisation but they were
chosen differently to avoid making an inverse crime [17].

The deep Gauss-Newton (DGN) were trained with a set
of 1000 absorption and scattering images as described in
Section III-B. The training images were either smooth dis-
tributions or mix distributions or both of these. The training
times are given in Table I.

Absorption and scattering images were estimated using the
model-based DGN as described in Sec. III. For comparison,
reconstructions using the conventional Gauss-Newton (GN)
Eq. (11) were computed. The conventional GN method used
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Fig. 2. (a) Three samples of ‘smooth’ absorption μa and scattering
μs images drawn from Ornstein-Uhlenbeck prior and (b) three samples
drawn from ‘mix’ targets.

Fig. 3. Meshes used in 2D simulations. Locations of the sources and
detectors are shown as red and blue stars on the mesh boundaries.
The number of FE-nodes Nn and elements Ne for the meshes are also
displayed. (a) Forward mesh was used for simulating measurement data.
(b)-(c) Inversion meshes 2D mesh 1 and 2D mesh 2 were used for
estimating the optical coefficients from the simulated data.

the Orstein-Uhlenbeck prior when estimating smooth targets
and the Gaussian sample-based prior when estimating mix
targets. The DGN utilised the Gaussian Orstein-Uhlenbeck
prior for all cases. The mean ηe = 0 and covariance 	e of
the measurement noise were assumed known.

1) Case 1: DGN Trained With Smooth Images: In this case,
the proposed DGN was trained using the smooth images.
Example reconstructions from one smooth target and one
mix target are shown in Fig. 4 (a)-(c). Further, statistics of
relative errors of absorption and scattering estimates from 1000
simulated targets and the computation times are shown in
Fig. 4 (d)-(e) and in Table I.

TABLE I
COMPUTATION TIMES FOR TRAINING 1000 ‘SMOOTH’ SAMPLES IN

HOURS (h) OR SECONDS (s), USING DIFFERENT INVERSION MESHES.
AVERAGE EVALUATION TIME PER SAMPLE IS REPORTED

Fig. 4. Reconstructions of (top) smooth and (bottom) mix targets, with
conventional GN and DGN trained using smooth images. (a) Target
absorption μa and scattering μ�s, (b) estimates using GN and (c) esti-
mates using DGN. Statistics of estimation errors for 1000 evaluation
cases are shown as ‘boxplots’ in (c), and the evaluation times in (d).

As shown, DGN provide estimates with similar quality
and accuracy as the conventional GN for both smooth and
mix targets. The computation times of the estimates with
DGN were lower than with the GN. Although the DGN
required additional evaluation of CNNs, it still provided a
computational advantage since the step-length parameter (si )
was learned and didn’t need to be computed at each iteration.

2) Case 2: DGN Trained With Mix Targets: In this case, the
DGN was trained with mix images. Example reconstructions
from one smooth target and one a mix target are shown in
Fig. 5 (a)-(c). Further, statistics of relative errors of absorption
and scattering estimates from 1000 simulated targets and the
computation times are shown in Fig. 5 (d)-(e) and in Table I.

As it can be seen, the absorption and scattering inclusions
of the mix targets are visualised more clearly when estimated
using the proposed DGN method. Furthermore, the estimates
from the mix targets obtained using DGN have lower errors
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Fig. 5. Reconstructions of (top) mix and (bottom) smooth targets, with
conventional GN and DGN trained using mix images. (a) Target absorp-
tionμa and scatteringμ�s, (b) estimates using GN and (c) estimates using
DGN. Statistics of estimation errors for 1000 evaluation cases are shown
in (c), and the evaluation times in (d).

when compared to the estimates obtained conventional GN.
On the other hand, the ‘out-of-distribution’ smooth targets now
show higher errors, due to artificial sharpening of the estimated
images with the DGN. Again, the computation times of the
estimates with the DGN were lower.

3) Case 3: DGN Trained With Both Smooth and Mix Targets:
In this case, the DGN was trained with both smooth and mix
images, i.e. 50 % of the training samples were smooth images
and 50 % were mix images.

Example reconstructions from one smooth target and one
mix target are shown in Fig. 6 (a)-(c). Further, statistics of the
relative errors of absorption and scattering estimates from 1000
simulated targets and the computation times are shown in
Fig. 6 (d)-(e) and in Table I.

As it can be seen, the reconstructions from smooth targets
are similar in quality when comparing DGN and GN solutions.
Also the relative errors are similar in magnitude. For the mix
targets, the reconstructions obtained using DGN show slightly
better contrast than those obtained with GN. However, the
difference between these is not as clear as when compared to
results obtained using mix training data. Further, the relative
errors are similar in magnitude. Computation times of the
estimates with the DGN were lower.

C. Estimation in Presence of Modelling Errors

Then, the DGN method in the presence of modelling errors
due to a coarse discretisation was studied. Use of coarse
discretisation is beneficial for memory consumption and com-
putation times. In these simulations, a mesh, ‘2D mesh 2’
shown in Fig. 3 (c), was used.

Fig. 6. Reconstructions of (top) smooth and (bottom) mix targets, with
conventional GN and DGN trained using both smooth and mix images.
(a) Target absorption μa and scattering μ�s, (b) estimates using GN
and (c) estimates using DGN. Statistics of estimation errors for 1000
evaluation cases are shown in (c), and the evaluation times in (d).

Absorption and scattering images were estimated using the
DGN. For comparison, estimates using conventional GN and
Gauss-Newton augmented with Bayesian approximation error
modelling (BAE) described in Sec. II-D were computed.

For training the DGN, the network parameters were trained
using 1000 smooth distributions or mix distributions. For
training the BAE method, the statistics of the discretisation
errors were calculated with 1000 samples of smooth or
mix distributions. These absorption and scattering parameters
(μa, μ

�
s) were projected from ‘2D mesh 1’ to ‘2D mesh 2’

to obtain (μ̄a, μ̄
�
s). Thereafter, the accurate forward solutions

Ah(μa, μ
�
s) and approximate forward solutions AH (μ̄a, μ̄

�
s)

were computed. Finally, the mean (ηε) and covariance (	ε) of
the approximation error ε = Ah(μa, μ

�
s) − AH (μ̄a, μ̄�s) were

computed. The training times of the BAE and DGN are given
in Table I. As seen, the DGN training times were higher than
training of the conventional BAE.

1) Case 1: DGN and BAE Trained With Smooth Images:
Example reconstructions from a smooth target in the presence
of discretisation errors is shown in 7 (a)-(d). The estimates
were computed using the proposed DGN and compared against
conventional GN and GN augmented with BAE. Further,
statistics of the relative errors of the estimates and computation
times from 1000 simulated targets, are shown in Fig. 7 (e)-(f)
and Table I.

It can be seen that the proposed DGN and the BAE
effectively marginalise modelling errors, providing comparable
images that have lower errors when compared to the GN. The
relative errors obtained with the BAE were comparable to
using the DGN. As seen, the evaluation time of the DGN
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Fig. 7. Reconstructions of smooth targets in the presence of modelling
erros. (a) Target absorptionμa and scatteringμ�s, (b) estimates using GN,
(c) BAE, and (d) DGN. Artefacts due to modelling errors are seen in the
GN estimates. These are compensated in the BAE and DGN estimates.
Statistics of the estimation errors for 1000 evaluation cases are shown
in (e), and the evaluation times in (f).

was lower than using the BAE, although the training time of
the DGN was higher than the BAE.

2) Case 2: DGN and BAE Trained With Mix Images: Example
reconstructions from a smooth target obtained using DGN,
GN and BAE in the presence of discretisation errors are shown
in Fig. 8 (a)-(d). Statistics of the relative errors of the estimates
and computation times from 1000 simulated targets are shown
in Fig. 8 (e)-(f) and Table I.

As it can be seen, the DGN and the BAE provide images
with better quality than the conventional GN that suffers from
artefacts due to the modelling errors. Furthermore, the relative
errors of DGN and BAE are lower than of GN, with DGN
providing the lowest relative errors for both absorption and
scattering estimates. The results demonstrate that the DGN can
compensate for modelling errors slightly better than the BAE
in the case of non-smooth targets. The DGN also had lower
computation time compared to BAE. However, the training
time was higher.

V. EXPERIMENTS

The phantom experiment was carried out with the
frequency-domain DOT instrument at the Aalto University,
Finland [46]. A cylindrical phantom with a radius of 35 mm
and height of 110 mm illustrated in Fig. 9 (a) and (d) was stud-
ied. The background optical parameters were approximately
μa = 0.01 mm−1 and μ�s = 1 mm−1 at wavelength 800 nm,
and two cylindrical inclusions which both had the diameter and
height of 9.5 mm, were located such that the central planes
of the inclusions coincided with the central xy-plane of the
cylinder domain. The optical properties of the inclusion 1 were
approximately μa,inc.1 = 0.02 mm−1, μ�s,inc.1 = 1 mm−1 (i.e.,
purely absorption contrast) and the optical properties of the
inclusion 2 were μa,inc.2 = 0.01 mm−1, μ�s,inc.2 = 2 mm−1

(i.e., purely scatter contrast), respectively.

Fig. 8. Reconstructions of mix targets in the presence of modelling
errors. (a) Target absorption μa and scattering μ�s, (b) estimates using
GN, (c) BAE, and (d) DGN. Artefacts due to modelling errors are seen
in the GN estimates. These are compensated in the BAE and DGN
estimates. Statistics of the estimation errors for 1000 evaluation cases
are shown in (e), and the evaluation times in (f).

The phantom provides absorption and scattering contrast of
2:1, similar to optical parameter variations in tumors [45]. The
source and detector configuration in the experiment consisted
of 16 sources and 15 detectors arranged in an interleaved
order on two rings located 6 mm above and below the central
xy-plane of the cylinder domain. The locations of sources
and detectors are shown with red circles and blue crosses
respectively in Fig. 9 (a). The measurements were carried out
at 785 nm with an optical power of 8 mW and angular mod-
ulation frequency ω = 100 MHz. The nearest measurement
data from each source position were removed from measured
amplitude and phase data. Logarithm of amplitude and phase
shift were stored as data, leading to real-valued measurement
vectors y ∈ R

360.

A. Reference Estimate

The absorption and scattering parameters were estimated in
a densely discretised mesh to provide a reference for the other
approaches. A ‘3D mesh 1’ shown in Fig. 9 (b) was used.

To calibrate the source strength and phase coupling of the
forward model to the experimental setup, a global calibration
was carried out on the measured data as the initial step in
the reconstruction process. Following the initial estimation
procedure in [47], the logarithm of source strength and phase
coupling were modelled by additive constants. The initialisa-
tion step consisted of a four-parameter fit of global background
parameters μa1∗ and μ�s1∗ as well as a global additive shift η
of log(amplitude) data and a global additive shift φ of phase
data,

(μa∗, μ�s∗, η, φ)= arg min
μa∗,μ�s∗,η,φ

�Le((y+�y)−A(μa∗, μ�s∗))�2,
(22)
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Fig. 9. (a) DOT experimental setup with position of sources (red circles)
and detectors (blue crosses) and two cylindrical inclusions. (b) ‘3D mesh
1’ is a densely discretised 3D mesh used in calculating ‘reference’
estimate with the GN method. (c) ‘3D mesh 2’ was used in calculating
estimates with the DGN, GN and GN augmented BAE. The number of
FE-nodes (Nn) and elements (Ne) in the meshes are also displayed.
(d) Top view of the phantom showing location of the inclusions.

where �y = (η, φ)T. The initialization problem was solved
using GN method which resulted in parameter estimates: η =
3.5, φ = 0.025, μa1∗ = 0.01mm−1, μ�s1∗ = 0.8mm−1.

Once the initialisation was completed, the measurement data
was transformed for the standard GN estimation (11) by the
recovered global offsets as y �→ y + �y, and the initial
parameter values and the prior means were set to the estimated
values μa1∗ and μ�s1∗.

Thereafter, the reference estimates were calculated with the
standard GN method. In the solution, the measurement noise
was assumed to be 1% of the measured absolute values of
the log amplitude and phase. Further, the Ornstein-Uhlenbeck
prior was used with the same parameter values that were used
in the simulations used.

B. Estimates in Presence of Model Errors
A coarse ‘3D mesh 2’, shown in Fig. 9 (c) was used in

evaluating the proposed DGN approach in the presence of
discretisation errors. For comparison, the BAE approach was
utilised, and the related minimisation problem was solved
using GN. Before reconstructions, the above described global
calibration was repeated for the data using the ‘3D mesh 2’.

To train the DGN, 1000 samples of 3D distributed
absorption and scattering distributions were drawn from the
Ornstein-Uhlenbeck prior and simulated measurement data
was calculated using ‘3D mesh 1’. To mimic the experimental
situation of unknown source strengths and phase coupling, the
corresponding coefficients (η, φ) were drawn from uniform
distributions

η ∼ U(1, 4), φ ∼ U(0.01, 0.04)

and added to the simulated measurement data. Thereafter,
for the training procedure, the ‘3D mesh 2’ was used to
compute the four-parameter fit using Eq. (22), transform the

Fig. 10. Absorptionμa and scatteringμ�s distributions reconstructed from
experimental data. (a) Reference estimate computed with dense mesh
‘3D mesh 1’, (b) GN estimate computed with mesh ‘3D mesh 2’, (c) BAE
estimate compute with ‘3D mesh 2’, and (d) DGN estimate compute with
‘3D mesh 2’.

data (y �→ y +�y), and subsequently to train the DGN with
the procedure described in Section III-B.

C. Results
Estimated absorption and scattering distributions calculated

using the DGN, GN and GN augmented with BAE in a coarse
discretisation and a GN in a fine discretisation are shown in
Fig. 10. Estimates on the central xy-plane of the cylindrical
domain are visualised.

As it can be seen in Fig. 10 (a), reference estimates
computed in ‘3D mesh 2’ show locations of absorption and
scattering inclusions with some boundary artefacts. Absolute
and difference imaging reconstructions using the phantom
were earlier presented in References [47], [48], and they show
similar quality reconstructions. The boundary artefacts are
larger in both absorption and scattering estimates obtained
with the GN in ‘3D mesh 2’ in Fig. 10 (b). Furthermore,
these artefacts are reduced utilising both the GN augmented
with BAE and DGN, as seen in Fig. 10 (c)-(d).

Note that the training of the DGN utilised smooth 3D
images drawn from Ornstein-Uhlenbeck prior, and not sharp
inclusions as were present in the experimental phantom.
As such, the evaluation in this case was carried out using
a ‘out-of-distribution’ target. The experiment demonstrates
that DGN trained on generalised smooth images and coarse
meshes can produce images with comparable quality to more
dense meshes, using lower computational resources than BAE
method.

The training and reconstruction time for the DGN, GN
and the BAE method are presented in Table I. It can be seen
that the reconstruction time using the experimental data was
lower using the proposed DGN, although the training time
(using simulated data) was higher.

VI. DISCUSSION

This work proposed a ‘model-based’ deep-learning
approach to absolute imaging of DOT. We demonstrated that
model-based learning can provide computational advantages to
the standard Bayesian inversion methods, when convolutional
neural networks trained with similar images are utilised in
the iterative parameter estimation procedure. This was demon-
strated utilising smooth and mix targets in Figs. 4, 5 and 6.

In addition to the improvement in computation time,
we demonstrated that the method can lead to improved
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estimates for targets which contain both sharp and smooth
features, in Fig. 5. As such, the proposed method can learn
non-Gaussian image features more efficiently than standard
Gaussian priors. We note that using hyper-priors in Bayesian
estimation also allow estimating such sharp image disconti-
nuities [49]. However, utilising hyper-priors in DOT might
lead to additional computational burden, for further estimating
hyper-parameters related to the priors.

In Figs. 7, 8 we demonstrated the efficacy of the proposed
method in compensation of discretisation errors. As shown
in 7, the proposed DGN can marginalise discretisation errors
with similar accuracy to BAE for smooth targets, providing
an advantage in computational time. For mix targets, the
proposed DGN outperforms the BAE in estimation accuracy
and computational times. This is possibly because CNNs can
learn and compensate non-Gaussian modelling errors more
efficiently than BAE, which assumes modelling errors as
Gaussian. The authors refer to [50], [51] for more discussions
on modelling error corrections using CNNs.

The proposed approach was applied to experimental data
and the estimates are presented in Fig. 10. As shown, both
BAE and DGN trained on smooth images can effectively com-
pensate modelling errors, and provide accuracy comparable to
reference estimates.

The purpose of the study was to present the applicability
of the approach to absolute imaging problem of DOT with
one relevant architecture. Therefore, we have not presented an
in-depth assessment of different deep learning architectures
in this work. The proposed DGN approach could be further
improved by carrying out a systematic optimisation of the
network architectures and involved parameters. Further, the
different estimation scenarios, such as the discretisation level
and geometry affect on the optimal training procedure as
well as modelling errors and experimental system related
uncertainties. These topics are part of planned future studies.
The authors refer to [27], [32] for other architectures that could
also be relevant for DOT.

A classical challenge in DOT is the cross-talk between
the optical parameters in the reconstructions. Artifacts due to
cross-talk are difficult to spot in smooth or mix images, as were
used in the article. Figure 11 shows reconstructions with sharp
inclusions solved with GN and DGN. The DGN was trained
with sharp inclusions, with random inclusion locations, sizes
and contrast. As seen, the cross-talk artefacts that are visible
in GN reconstruction are not seen in DGN. We also compared
the approach with a sparse recovery scheme that is known
to reduce spatial variations in a reconstructed image, whilst
preserving sharp discontinuities [13]. We used a sparsity-
promoting total-variation (TV) prior [52] implemented with
Toast++ software [41] and the conventional GN algorithm.
The reconstructed images are shown in Figure 11(d). As seen,
use of TV prior results in lower background variations com-
pared to using Gaussian prior in Figure 11(b). However, the
cross-talk artifact of the scattering inclusion in the absorption
image is still visible.

The study draws connections between statistical Bayesian
and learning-based approaches, showing that insights from
Bayesian inversion can be used in the design of learned image

Fig. 11. (a) Target absorption (top) and scattering (bottom) distributions.
The reconstructed distributions using (b) Gauss-Newton (GN) algorithm,
(c) deep Gauss-Newton (DGN) algorithm and (d) Gauss-Newton algo-
rithm using a total-variation prior (GN-TV).

reconstruction. This opens the possibility for future studies to
analyse these connections more carefully.

VII. CONCLUSION

We presented a novel approach for estimating absolute
optical parameters in DOT, utilising a model-based iterative
deep-learning approach. The results were validated with 2D
simulations and a DOT experiment. The results show that
the proposed approach leads to improved computational times
compared to conventional Gauss-Newton method. Also, the
proposed approach can learn non-Gaussian image features
and provide improved estimates for targets presenting sharp
inclusions. No considerable loss of image quality was reported
in situations where imaging targets did not match the train-
ing data. Furthermore, the proposed approach was shown to
effectively compensate for modelling errors. It was shown to
provide improved computational time and estimation accuracy
for non-Gaussian targets, compared to the Bayesian approxi-
mation error method.
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