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Abstract: Solving inverse problems requires knowledge of the forward operator, but accurate
models can be computationally expensive and hence cheaper variants are desired that do not com-
promise reconstruction quality. This chapter reviews reconstruction methods in inverse problems
with learned forward operators that follow two different paradigms. The first one is completely
agnostic to the forward operator and learns its restriction to the subspace spanned by the training
data. The framework of regularisation by projection is then used to find a reconstruction. The
second one uses a simplified model of the physics of the measurement process and only relies on
the training data to learn a model correction. We present the theory of these two approaches and
compare them numerically. A common theme emerges: both methods require, or at least benefit
from, training data not only for the forward operator, but also for its adjoint.
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1 Introduction

The quality of solutions to an inverse problem depends crucially on the availability of a reliable
forward model allowing to make accurate predictions that can be compared with measured data.
Such models do not always exist due to the complexity of the phenomena involved and even when
accurate models exist they may be computationally too expensive for practical and time critical use.
Consequently, there is a need for efficient models that allow for fast computations without sacrificing
reconstruction quality.

For instance, more efficient models can be obtained by introducing simplifying assumptions,
such as neglecting scattering in X-ray imaging [1, 2], allowing only for use in certain ideal scenarios.
Another option to obtain more efficient models would be to consider coarser discretisations, for
instance of the finite element mesh in PDE based models, but this may lead to a considerable loss
of accuracy and hence a compensation is needed to retain sufficient reconstruction quality [3, 4].
Finally, in some applications the model and solutions can be constrained to a subspace allowing for
a reduced order representation of the model [5–7].

In recent years the interest in data-driven methods has also sparked new interest to design novel
techniques that combine analytical and learned components in the forward model. In this chapter
we will review two fundamentally different paradigms of the problem based either on learning a data-
driven representation of the forward model following the paper [8] or learning a correction operator
to a given cheaper approximation of the forward model [9].

The first approach relies on the important observation that if the forward operator is linear
then its restriction to the span of the training data can be computed without any access to the
forward operator. The method proposed in [8] relies on orthogonalising the training set using a
Gram-Schmidt process (see also [10] for generalisations). While this is costly, it has to be done only
once and “offline”, i.e. before solving the actual inverse problem, and can be reused for problems
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with the same operator but different measurements. In some sense, this is similar to using a neural
network, where training is costly but applying a trained network is cheap.

The second approach follows the classic model correction paradigm and assumes that a compu-
tationally inexpensive simplified model is given, such as a coarser discretisation [3] or an analytic
approximation [11], which in itself is not sufficiently accurate to produce good reconstructions when
used in a classic variational reconstruction framework. The recent work in [9, 11] considers the op-
tion to learn a data-driven correction given by a neural network and suitable training data. We will
discuss two approaches to learn such a correction either as part of a learned reconstruction operator,
such as an unrolled iterative scheme [11], or as a separate explicit correction network for the forward
operator [9].

Finally, let us shortly discuss related studies that are not covered in this chapter. The authors
in [12] propose to learn forward operator (or its regularised inversion) based on invertible residual
networks (ResNet), establishing a direct and invertable mapping between image and data space.
Furthermore, there exists a growing body of literature on operator learning outside of the context
of inverse problems primarily concerned with learning solution operators for PDEs, e.g. [13–19]. We
note that such learned forward models can be employed in an inversion scheme for related parameter
identification problems [20], but this is outside the scope of this chapter.

In this chapter we compare the two aforementioned approaches [8, 9]. We start with a discussion
of data-driven regularisation by projection in Section 2 and then move on, in Section 3, to the
case where an approximate model is given and learning a correction of the approximation error
is necessary. We discuss implicit and explicit corrections and draw connections to the previous
section on regularisation by projection. We then present numerical experiments with the discussed
approaches in Section 4 for the example of limited-view photoacoustic tomography.

We also identify a common theme: it turns out that in order to obtain good reconstructions,
both methods require (or at least benefit from) training data not only for the forward operator but
also for its adjoint.

1.1 Mathematical setting

Within this chapter we will consider a linear inverse problem

Ax = y, (1.1)

where A : X → Y is a linear bounded operator acting between separable Hilbert spaces X and Y and
A∗ : Y → X is its adjoint. Often, the exact right-hand side in (1.1) is not available and we only have
access to an approximation yδ such that

∥∥y − yδ
∥∥ ≤ δ for some δ > 0. We will describe methods for

solving (1.1) that do not require access to the exact operator A during the solution phase, but rely
on training pairs/triples

xi ∈ X , yi = Axi ∈ Y, and zi = A∗Axi ∈ X , i = 1, ..., n, (1.2)

together with (in some cases) a simplified approximate model and its adjoint Ã : X → Y, Ã∗ : Y →
X . Borrowing terminology from tomography, we will call xi’s images, yi’s measurements and zi’s
backprojections. The collection {xi, yi, zi}i=1,...,n from (1.2) will be referred to as training data.

2 Data-driven regularisation by projection

2.1 Introduction to data projection methods

The idea of building a low-dimensional representation of data sets and operators between them
is an established technique in statistics and forms the basis of several classical machine learning
methods as well as more recent deep learning based approaches. Linear methods based on principle
components analysis (PCA) and robust-PCA construct spaces such that the residual error from
projection onto them is small with respect to a specified tolerance in a 2-norm or 1-norm respectively.
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Applying these techniques to the range and domain of an operator provides a so-called reduced
order model (ROM), which can as well be applied to a PDE based operator and its inverse (the
Green’s operator) [7, 21, 22]. Kernel-PCA provides an extension by specifying a distance between
data samples through a kernel function that allows for a non-linear separation criterion between
components [23]. Independent component analysis (ICA) is another classical non-linear factorisation
of data that is based on maximising the statistical independence of the estimated components [24].
Finally, recent developments in deep learning assume that appropriate training data lie on a manifold
in an abstract latent space that is obtained by learning simultaneously an encoder to, and a decoder
from, the manifold such that the composite operator (an “autoencoder”) minimises an appropriate
loss function [25].

While in these approaches one is interested in a low-dimensional representation of the whole
dataset, one may also ask a question how well does the dataset approximate specifically the ground
truth. This is, in some sense, a local approximation property and it plays an important role in the
analysis presented in [8].

Let us also mention that projections are the basis of some classical regularisation methods as
well, e.g. [26–31].

2.2 Setting and main assumptions

We start with a simple but important observation that was made in [8]: the training data (1.2)
completely describe the forward and the normal operators on the span of the training images
span{xi}i=1,...,n. The restriction of A and A∗A to this subspace can be computed using Gram-
Schmidt orthogonalisation, which needs to be done only once and can be done off-line, prior to
solving the inverse problem. In this section we will show how such learned operators can be used
for regularised inversion of (1.1).

Let us first fix some notation and state our main assumptions. The exact solution of (1.1) (with
exact forward model A and noise-free measurement) will be denoted by xtrue.

The spans of the training images, measurements and backprojections will be denoted by

Xn := span{xi}i=1,...,n, Yn := span{yi}i=1,...,n, Zn := span{zi}i=1,...,n.

Orthogonal projection operators onto Xn, Yn and Zn are denoted by PXn , PYn and PZn , respectively.

Assumption 1 (Independence, uniform boundedness, sequentiality).
Linear independence: For every n ∈ N the images {xi}i=1,...,n are linearly independent.
Uniform boundedness: There exist constants cu, Cu > 0 such that cu ≤

∥∥xi∥∥ ≤ Cu for all i ∈ N.
Hence with no loss of generality we will assume that

∥∥xi∥∥ = 1 for all i ∈ N.
Sequentiality: The families of training triples are nested, i.e. for every n ∈ N

{xi, yi, zi}i=1,...,n+1 = {xi, yi, zi}i=1,...,n ∪ {xn+1, yn+1, zn+1}. (2.1)

Consequently, the subspaces Xn, Yn and Zn are nested, that is

Xn ⊂ Xn+1, Yn ⊂ Yn+1, Zn ⊂ Zn+1 for all n.

We also need to make an assumption that the training images are sufficiently rich in the sense
that the collection of all images {xi}i∈N is dense in X .

Assumption 2 (Density). We assume that the subspaces spanned by the images {xi}i∈N are dense
in X , that is ⋃

n∈N
Xn = X .

As a consequence, we have that the subspaces spanned by the training measurements {yi}i∈N
and backprojections {zi}i∈N are dense in the closures of the ranges R(A) and R(A∗A), respectively.

3



2.3 The injective case: regularisation by projection

Let y ∈ R(A) be the exact, noise-free right-hand side in (1.1) and consider the following projected
problem

APXnx = y. (2.2)

Its minimum-norm solution is given by

xXn = (APXn)
†y, (2.3)

where (APXn)
† denotes the Moore-Penrose inverse of APXn . The superscript X in xXn reflects the

fact that the projection in (2.2) takes place in X .
The following result shows that in the injective case, a simple formula for (APXn)

† exists.

Theorem 1 ([8, Thm. 4]). Let A be injective. Then the Moore-Penrose inverse of APXn is given
by

(APXn)
† = A−1PYn .

Combining this with (2.3), we get a simple reconstruction formula

xXn = A−1PYny. (2.4)

Since A is injective, the restriction of its inverse to Yn can be computed using only the training
data (1.2). Gram-Schmidt orthogonalisation can be used for this purpose; we refer to [8, Sect. 3.1]
for details.

The approach (2.2) is known as regularisation by projection [32]. In the model-based setting,
projections are taken onto subspaces spanned by a certain number of basis functions, for example,
finite elements. If the basis of singular vectors of the forward operator A is used, the method reduces
to the truncated singular value decomposition [32]. In our case, projections are taken onto subspaces
given by training data.

2.3.1 Convergence analysis

Examples of non-convergence exist [33] that show that minimum-norm solutions (2.3) can diverge
as n → ∞ even for a noiseless measurement y. Therefore, without additional assumptions on the
subspaces Xn, we cannot expect convergence of the reconstructions (2.4). In [8] sufficient conditions
have been obtained that rely on the interplay between the training images {xi}i∈N, the exact solution
xtrue and the forward operator A.

To state these conditions, let us apply Gram-Schmidt orthogonalisation to the sequence {xi}i∈N,
obtaining an orthonormal basis {xi}i∈N of X . Transforming accordingly the training measurements
{yi}i∈N, we obtain a corresponding sequence {yi}i∈N such that Axi = yi. Expanding the exact
solution in the basis {xi}i∈N, we get

xtrue =
∞∑
i=1

〈
xtrue, x

i
〉
xi. (2.5)

We are now ready to state our assumptions.

Assumption 3. Coefficients of the expansion (2.5) are in ℓ1, i.e.

∞∑
i=1

∣∣〈xtrue, xi〉∣∣ < ∞.

Summability conditions such as Assumption 3 are common in machine learning and are used to
define so-called variation norm spaces [34, 35].
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Remark 1. In [12], the authors introduce the so-called local approximation property (Theorem
3.1) which requires that the neural network achieves certain approximation rates in the vicinity of
the ground truth, but not globally. This turns out to be sufficient for the convergence of regularised
solutions. On the conceptual level, this assumption is similar to our Assumption 3 which only requires
a certain approximation rate of the ground truth by the subspaces spanned by the training images.

Assumption 4. For every n ∈ N and any i ≥ n+1 consider the following expansion of PYny
i ∈ Yn

PYny
i =

n∑
j=1

βi,n
j yj . (2.6)

We assume that for every n ∈ N

n∑
j=1

(βi,n
j )2 ≤ C, for every i ≥ n+ 1, (2.7)

where C > 0 is a constant independent of i and n.

We emphasise that the expansion coefficients βi,n
j change with n because {yi}i=1,...,n is not an

orthogonal basis.
Assumption 4 is far less interpretable than Assumption 3. It depends on the interplay between

the training images {xi}i∈N and the forward operator A. As discussed in [8, Sect. 6.1.3], checking
this assumption numerically is also problematic because computing the coefficients βi,n

j would involve
inverting an ill-conditioned matrix. (Note, however, that this inversion is not required for finding the
solution (2.4).) In the non-convergence example from [33], Assumption 4 can be checked analytically
(and is valid).

The above two assumptions allow us to prove uniform boundedness of minimum-norm solu-
tions (2.4).

Theorem 2 ([8, Thm. 11]). Let Assumptions 3 and 4 be satisfied. Then xXn as defined in (2.4)
is uniformly bounded with respect to n. Consequently, we have that xXn ⇀ xtrue weakly along a
subsequence.

Under additional assumptions it is possible to prove strong convergence [8, Thm. 15].
So far, we have considered the case of a noise-free measurement y in (1.1). If the measurement

is noisy (yδ such that ∥y − yδ∥ ≤ δ for some known noise level δ > 0) then the parameter n in
the projected equation (2.2) becomes a regularisation parameter [32] that needs to be chosen as a
function of the measurement noise, the larger the noise level δ the smaller n. Details about our
specific setting can be found in [8, Thm. 17].

It may seem counter-intuitive that increasing the size of the training set should lead to instabili-
ties, but in our case the parameter n also controls model complexity, i.e. the number of components
in the solution. By the nature of the reconstruction formula (2.4), we are in the regime where the
number of parameters matches the number of data (i.e., we are not in the overparametrised regime)
and hence the complexity of a model has to be controlled by the noise in the data. This is in line
with classical results on training neural networks from noisy data [36].

2.3.2 Dual least squares

Although projecting the equation (1.1) in the space X as in (2.2) does not yield a convergent solution
in general, it is known that projecting (1.1) in the space Y yields convergent solutions. This method
is also referred to as dual least squares [32].

The dual least squares method consists in finding the minimum norm solution of the following
problem

PYnAx = PYny, (2.8)
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We denote the minimum norm solution of (2.8) by xYn , where the superscript Y emphasises the fact
that the projection in (2.8) takes place in Y.

The following classical result shows that xYn converges strongly to the exact solution xtrue as
n → ∞.

Theorem 3 ([32, Thm. 3.24]). Let y be the exact data in (1.1). Then the minimum norm solution
of (2.8) is given by

xYn = PA∗Ynu
†, (2.9)

where PA∗Yn is the orthogonal projector onto the subspace A∗Yn. Consequently,

xYn → u† as n → ∞.

The following result gives a simple characterisation of the Moore-Penrose inverse of PYnA, simi-
larly to Theorem 1.

Theorem 4 ([8, Thm. 19]). Let A have a dense range. Then the Moore-Penrose inverse of PYnA
is given by

(PYnA)† = PA∗YnA
−1.

Hence, the minimum norm solution xYn of (2.8) is given by

xYn = PA∗YnA
−1PYny = PA∗Ynx

X
n , (2.10)

where xXn is the minimum norm solution of (2.2) as defined in (2.4).

The space A∗Yn is, in fact, nothing but the span of the training backprojections {zi}i=1,...,n

A∗Yn = Zn.

Therefore, in order to compute the stable reconstruction (2.10), having training data for the forward
operator A is not sufficient, one also needs training data for the adjoint A∗. The need for training
data for the adjoint is a topic that we will also encounter later in Section 3 when we will discuss
data-driven model corrections.

As in Section 2.3.1, if the measurement in (1.1) is noisy, the model complexity (that is, the dimen-
sion of the space n) has to be controlled by the amount of noise in the measurement. Convergence
analysis of the dual least squares method can be found in [32, Thm. 3.26].

2.3.3 Numerical experiments

In this section we present an overview of numerical experiments with data-driven regularisation by
projection (2.2) and dual least squares (2.8) as reported in [8]. For a detailed exposition we refer
to [8, Sec. 6]. We use images from “The 10k US Adult Faces Database” [37]. This is a dataset of
about 10000 natural face photographs that we resize to 100 × 100 pixels. Sample images from the
database are shown in Figure 1 (left column).

As our training images {xi}i=1,...,n in (1.2) we choose n randomly selected photographs, with
different n ≤ 10000. As the ground truth xtrue in (1.1) we take an image from the same dataset
which is not contained in the training set.

Applying Gram-Schmidt orthogonalisation to {xi}i=1,...,n, we obtain an orthonormal system
{xi}i=1,...,n. Using this system, we can numerically check Assumption 3 by plotting the partial
sums

n∑
i=1

∣∣〈xtrue, xi〉∣∣
for different n. The result is shown in Figure 2. The partial sums seem to be bounded uniformly in
accordance with Assumption 3. We stress that Assumption 3 is an assumption on the dataset and
does not depend on the forward operator.
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Figure 1: Samples xi from the dataset (left
column), their Radon transforms yi := Axi

(central column) and their backprojections
zi := A∗yi = A∗Axi (right column).

Figure 2: Partial sums
∑n

i=1

∣∣〈xtrue, xi〉∣∣ in
Assumption 3 for images in Figure 1 and n =
1, ..., 9000. Assumption 3 does not seem to
be violated.

As the forward operator, we take the Radon transform. Radon transforms and backprojections
of sample images from the dataset are shown in Figure 1 (centre and right columns).

We start by analysing the inversion formula (2.4) obtained from the projected equation (2.2).
Figure 3 shows reconstructions from a clean measurement y for different values of n. As the size of
the training set n increases, the reconstructions start developing oscillations, but generally remain
stable for a wide range of n. Reconstructions from a noisy measurement yδ, shown in Figure 4,
exhibit typical semi-convergence behaviour with increasing n.

With dual least squares the situation is similar. Reconstructions from a clean measurement y
are shown in Figure 5. As n increases, the reconstructions improve. Comparing them with those
obtained by projections in the space X , see Figure 3, we note that the dual least squares method
does not develop oscillations. Reconstructions from a noisy measurement yδ, shown in Figure 6,
exhibit semi-convergence. However, instabilities kick in later than in regularisation by projection
(see Figure 4).

2.4 The non-injective case: variational regularisation

If the forward operator A is not injective, the results of Section 2.3 do not apply because (2.4)
requires us to be able to apply the inverse A−1 to elements in the span of the training measurements
Yn = span{yi}i=1,...,n. However, the training data (1.2) still allow us to evaluate the forward operator
on the span of the training images Xn = span{xi}i=1,...,n. Indeed, using the orthonormalised system
{xi}i=1,...,n and the corresponding transformed measurements {yi}i=1,...,n, we get that for any x ∈ Xn

x =
n∑

i=1

〈
x, xi

〉
xi and Ax =

n∑
i=1

〈
x, xi

〉
Axi =

n∑
i=1

〈
x, xi

〉
yi, x ∈ Xn.

For an arbitrary x ∈ X , therefore, we can evaluate the restriction APXn without having numerical
access to A:

APXnx =
n∑

i=1

〈
x, xi

〉
yi, x ∈ X . (2.11)

The operators APXn approximate A pointwise as n → ∞; if A is compact then approximation
also holds in the operator norm [38]. Hence, we are in the framework of inverse problems with
operator errors (e.g., [26, 29, 39]).

In this section we will study the following variational regularisation problem

min
x∈X

1

2

∥∥∥APXnx− yδ
∥∥∥2 + αJ (x), (2.12)
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(a) n = 1000 (b) n = 2000 (c) n = 5000 (d) n = 7000

Figure 3: Reconstructions obtained by regularisation by projection (2.4) from a clean measurement
y ∈ R(A). Images develop oscillations as the size of the training set n increases, but generally the
reconstructions remain stable for a large range of n.

(a) n = 1000 (b) n = 2000 (c) n = 5000

Figure 4: Reconstructions obtained by regularisation by projection (2.4) from a noisy measurement
yδ (1% noise). Semi-convergence is observed with reconstructions initially improving with larger
values of n and then eventually becoming unstable.

where J : X → R+∪{+∞} is a regulariser and α > 0 a regularisation parameter. Before we proceed
with the analysis, let us say how our setting differs from the literature.

Firstly, although the forward operator in (2.12) is evaluated on a finite-dimensional subspace,
the solution will not be finite-dimensional, in general. This is different from the setting of discretised
variational regularisation [26, 29], where the solution is constrained to lie in an a priori prescribed
finite-dimensional space. This is also in contrast with Section 2.3, where the reconstructions (2.4)
and (2.10) are linear combinations of a finite number of training points.

Secondly, classical theory of regularisation under operator errors deals with bounds in the op-
erator norm hn such that ∥A−APXn∥ ≤ hn. This is a global estimate that depends on how well
the subspaces Xn agree with the operator A (the ideal choice would be, obviously, the eigenspaces
of A corresponding to n largest eigenvalues). From the data-driven point of view, we would like
to work with a local error estimate such as

∥∥∥(A−APXn)x
†
J

∥∥∥ or
∥∥∥(I − PXn)x

†
J

∥∥∥, where x†J is the
J -minimising solution of (1.1). Even if the global approximation error ∥A−APXn∥ is large, conver-
gence can still be fast if the training data (1.2) are chosen well for a particular solution x†J . This will
be formalised in Theorem 6 below. Such local approximation conditions appear in other contexts as
well, such as regularisation by invertible residual networks [12], as discussed earlier.

2.4.1 Convergence analysis

We will make the following standard assumptions.

Assumption 5. The regularisation functional J : X → R+ ∪ {+∞} is proper, convex, lower-
semicontinuous, and absolutely p-homogeneous (p ≥ 1).

Denote by N (J ) the kernel (zero-level set) of the regulariser J , which is a linear subspace

8



(a) n = 1000 (b) n = 2000 (c) n = 5000 (d) n = 7000

Figure 5: Reconstructions obtained by dual least squares (2.10) from a clean measurement y ∈ R(A).
Reconstructions remain stable and converge to the ground truth as n → ∞.

(a) n = 1000 (b) n = 2000 (c) n = 5000 (d) n = 6000

Figure 6: Reconstructions obtained by dual least squares (2.10) from a noisy measurement yδ (1%
noise). Semi-convergence is observed: after improving initially, the reconstructions become unstable
as n becomes large.

because J is convex and absolutely p-homogeneous.

Assumption 6. The kernel N (J ) satisfies dim(N (J )) < +∞ and J is coercive on the quotient
space X/N (J ). Furthermore, for all n ∈ N we have

N (APXn)
⋂

N (J ) = {0}.

If J is the Total Variation, Assumptions 5 and 6 are satisfied if APXn : L2 → L2 does not
annihilate constant functions.

Existence of minimisers in (2.12) follows from standard arguments. Convergence as δ → 0 can
be ensured under the usual parameter choice rule α = α(δ, n).

Theorem 5. Suppose that Assumptions 5 and 6 are satisfied and the regularisation parameter α =
α(δ, n) is chosen such that

α → 0 and

(
δ +

∥∥∥(I − PXn)x
†
J

∥∥∥)2

α
→ 0 as δ → 0 and n → ∞.

Then every sequence of minimisers xn,δJ of (2.12) has a weakly convergent subsequence

xn,δJ ⇀ x†J .

Convergence rates in a Bregman distance can also be obtained assuming that x†J satisfies a
source condition.
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Theorem 6. Suppose that Assumptions 5, 6 are satisfied and that x†J satisfies a source condition,
i.e. there exists an element q ∈ Y such that

A∗q† ∈ ∂J (x†J ).

Then the following estimate holds for the Bregman distance between xn,δJ and x†J

DA∗q†

J (xn,δJ , x†J ) ≤ 1

2α

(
δ + ∥A∥

∥∥∥(I − PXn)x
†
J

∥∥∥)2

+
α

2

∥∥∥q†∥∥∥2 + (
δ
∥∥∥q†∥∥∥+ C

∥∥∥(I − PXn)A
∗q†

∥∥∥)
for some constant C > 0.

If the regularisation parameter α = α(δ, n) is chosen as in Theorem 5 then

DA∗q†

J (xn,δJ , x†J ) → 0 as δ → 0 and n → ∞.

For the particular choice

α ∼
(
δ +max

{∥∥∥(I − PXn)x
†
J

∥∥∥ ,∥∥∥(I − PXn)A
∗q†

∥∥∥}) (2.13)

we obtain the following estimate
DA∗q†

J (xn,δJ , x†J ) ∼ α.

The proofs of both theorems are similar to [26, 29], although in those papers minimisers of the
functional x ∈ X →

∥∥Ax− yδ
∥∥2 + αJ (x) are approximated by minimisers of the same functional

over Xn, while we solve the problem on the whole infinite-dimensional space.
We note that the convergence rate in Theorem 6 depends not only on how well the training

images {xi}i=1,...,n approximate the J -minimising solution x†J , which is not surprising, but also on
how well they approximate the subgradient A∗q† from the source condition. This is another instance
where training data for the adjoint operator A∗ may be advantageous.

We would also like to emphasise the different roles that the amount of training data n plays
in regularisation by projection (Section 2.3) and variational regularisation. In regularisation by
projection the solution is a linear combination of n elements of the training set and therefore the
size of this set n controls the model complexity. The number of parameters in this case is the same
as the number of training points. Furthermore, this number has to be controlled by the level of noise
in the measurement yδ. In variational regularisation the solution is infinite-dimensional. Therefore,
in some sense, we are in an overparametrised regime where the number of parameters (degrees of
freedom in the solution) is infinite while the number of training points is finite. The parameter n
controls the approximation quality of the forward operator and can be chosen independently of the
amount of noise in yδ.

2.4.2 Iterative reconstruction methods and the role of the adjoint

The method (2.12) has demonstrated good numerical performance in the same setting as in Sec-
tion 2.3.3. We refer to [8, Sec. 6.4] for details. These experiments used conic solvers provided by
the CVX package [40]. Due to memory requirements, such solvers are not suited for large-scale
applications such as imaging, and iterative solvers are used instead. In this section we briefly discuss
the application of such methods.

Perhaps the simplest iterative method, gradient descent, consists in taking the following updates
for solving (2.12)

xk+1 = xk − τk((APXn)
∗(APXn)x

k − (APXn)
∗yδ + αqk)

= xk − τk(PXn(A
∗APXnx

k −A∗yδ) + αqk), qk ∈ ∂J (xk), (2.14)

10



where ∂J (xk) is the subdifferential of J at the iterate xk and τk > 0 is the step size. We see that
the iteration requires computing the operator (APXn)

∗ = PXnA
∗. It is an easy calculation to show

that it can be evaluated without numerical access to A∗:

PXnA
∗y = (APXn)

∗y =

n∑
i=1

⟨y, yi⟩xi, y ∈ Y. (2.15)

Compare (2.14) to the gradient descent step for the corresponding problem with the exact oper-
ator A,

xk+1 = xk − τk(A
∗Axk −A∗yδ + αqk). (2.16)

In (2.14) a projection PXn is applied after the action of the restriction of the normal operator
A∗APXn . Depending on the problem, this may be a curse or a blessing. The range of the operator
A∗APXn is the span of the training backprojections {zi}i=1,...,n,

R(A∗APXn) = Zn = span{zi}i=1,...,n,

while the projection PXn will force the updates into the span of the training images {xi}i=1,...,n,

R(PXnA
∗APXn) ⊆ Xn = span{xi}i=1,...,n.

Depending on which subspaces, Xn or Zn, can better approximate the J -minimising solution x†J ,
the projection PXn in (2.14) may or may not be beneficial. We also note that if the forward operator
is smoothing then elements of Zn will be smoother than those of Xn.

The (outer) projection PXn in (2.14) can be avoided if we have access to training data for the
normal operator {zi}i=1,...,n, see (1.2). In this case we can directly approximate the normal operator
in (2.16) with its restriction to Xn and obtain

xk+1 = xk − τk(A
∗APXnx

k −A∗PYny
δ + αqk). (2.17)

The operator A∗APXn can be evaluated without numerical access to either A or A∗ using training
data (1.2):

A∗APXnx =
n∑

i=1

⟨x, xi⟩ zi,

where {xi}i=1,...,n are the orthonormalised training images and {zi}i=1,...,n the corresponding trans-
formed backprojections. We need to apply a projection PYn to the measurement yδ before applying
A∗ to match the range of the learned normal operator, R(A∗APXn) = Zn = R(A∗PYn). The
restricted operator A∗PYn can also be evaluated without numerical access to A∗ using training
data (1.2).

We will present numerical experiments with these approaches in Section 4.2.

3 Data-driven model correction

In the following we will consider the case, where an expensive forward model can be approximated by
a cheaper or computationally more efficient version. For instance, in applications where the forward
model is given by the solution of a partial differential equation, model reduction techniques are often
used to reduce computational cost, for instance by reduced order models as discussed in the previous
section or simply coarser discretisations. When the accurate model is replaced by a reduced one,
this will lead to approximation errors, which may corrupt the reconstructed image depending on
the severity of the approximation error. In the following, we will discuss how such model errors can
be corrected with data-driven methods and then used to solve the inverse problem in a variational
setting.
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We remind, that the primary setting considers linear inverse problems, where x ∈ X be the
unknown quantity of interest we aim to reconstruct from measurements y ∈ Y, where X , Y are
separable Hilbert spaces and x and y fulfil the relation

Ax = y, (3.1)

given bounded linear A : X → Y representing the accurate forward operator.
As motivated, we assume that the evaluation of the accurate operator A is computationally

expensive and we rather want to use a cheaper approximate model Ã : X → Y with

Ãx = ỹ, (3.2)

leading to a systematic model error δy = y− ỹ. In the following we will discuss different approaches
how to take this systematic approximation error into account. First, we discuss a classic statistical
correction, introduced as the approximation error method [3, 41] and a specific application for linear
corrections to nonlinear models in the variational setting [42]. We will then discuss the two principled
approaches, implicit and explicit corrections, in the framework of learned image reconstruction and
the possibility to establish convergence guarantees for the explicit case [9].

3.1 The approximation error method

The well-established Bayesian approximation error method [3, 41] is an early data-driven approach
to estimate a statistical model error. Recall, that in Bayesian inversion we want to determine the
posterior distribution of the unknown x given y and using Bayes’ formula we obtain

p(x|y) = p(y|x)p(x)
p(y)

. (3.3)

Thus, the posterior distribution is characterised by the likelihood p(y|x) and the chosen prior p(x)
on the unknown. Typically, the likelihood p(y|x) is modelled using accurate knowledge of the
forward operator A : X → Y as well as the noise model on the data y. The underlying idea of the
approximation error method is now to adjust the likelihood by examining the difference between the
(accurate) forward operator A and its approximation Ã (3.1)–(3.2) as

ε = δy = Ax− Ãx. (3.4)

Including an additive model for the measurement noise e, this leads to the modified observation
model

y = Ãx+ ε+ e. (3.5)

Here, both errors are (usually) assumed to be Gaussian. That is, first we model the measurement
noise e independent of x as e ∼ N (ηe,Γe), where ηe and Γe are the mean and covariance. Further,
the model error ε is approximated as Gaussian ε ∼ N (ηε,Γε) and is modelled independent of the
noise e and unknown x leading to a Gaussian distributed total error n = ε+e, n ∼ N (ηn,Γn), where
ηε and ηn are means and Γε and Γn are the covariance matrices of model error and total errors,
respectively. We note here, that the assumption of independence is a simplification and in practice
one often observes dependence of the error on the signal. Combining these, leads to the so-called
enhanced error model for the inverse problem [41] with a likelihood distribution of the form

p(y|x) ∼ exp

(
−1

2
∥Ln(Ãx− y + ηn)∥2Y

)
where LT

nLn = Γ−1
n is a matrix square root such as the Cholesky decomposition of the inverse

covariance matrix of the total error. In case the measurement noise e is Gaussian white noise with
zero mean and constant standard deviation σ, the above can be written as

p(y|x) ∼ exp

(
− 1

2σ
∥Lε(Ãx− y + ηε)∥2Y

)
12



where LT
ε Lε = Γ−1

ε . Which motivates writing the variational problem, or the maximum a posteriori
(MAP) estimator, for (3.3) in the form

x∗ = argmin
x∈X

1

2
∥Lε(Ãx− y + ηε)∥2Y + λJ (x). (3.6)

In order to compute solutions, the unknown distribution of the model error needs to be approx-
imated. That can be obtained for example by simulations [3, 43] as follows. Let {xi, i = 1, . . . , N}
be a set of samples drawn from a training set. The corresponding samples of the model error are
then

εi = Axi − Ãxi (3.7)

and the mean and covariance of the model error can now be estimated from the samples as

ηε =
1

N

N∑
i=1

εi and Γε =
1

N − 1

N∑
i=1

εi(εi)T − ηεη
T
ε . (3.8)

The approximation error method has found a widespread application in inverse problems, partly
due to its simplicity but high effectiveness in compensating for model errors. Examples of situations
where it has been used successfully include model mismatch [44], uncertainty in sensor locations
[45], compensating for unknown boundary shapes [46], and even recent applications in wireless
communication [47].

Despite the success, it has been recently noted that the assumption of Gaussian distributed model
errors as well as the indecency assumption are not sufficient, especially when considering nonlinear
inverse problems [42, 48, 49]. This motivated the recent development of data-driven approaches
to estimate non-Gaussian and nonlinearly distributed model errors as discussed in the following
sections.

3.1.1 Sequential model correction

Let us first discuss shortly the work [42], which further examines the non-Gaussianity of model errors
in the case where the accurate forward model A is nonlinear and the approximation Ã is given by a
linear model. This leads to a successive linearised and convexified problem that can be solved in a
sequential manner as we will outline below.

In this case, we write (3.1) again in terms of Ã, which yields the observation model

y = Ãx+A(x)− Ãx+ e = Ãx+ ε(x) + e. (3.9)

We note that here the approximation creates a nonlinear approximation error, denoted by ε(x), in
contrast to the linear error in (3.5). Consequently, this formulation of the model is still nonlinear
as we have just moved the nonlinearity into ε(x). Let us now assume that we have access to some
initial reconstruction x0 ∈ X . We can then write the model as

y ≈ Ãx+ ε(x0) + e, (3.10)

which is linear since x0 is known and we can evaluate ε(x0). This leads to the linear and convex
variational formulation, given a convex regulariser J ,

x∗ = argmin
x∈X

{
∥Ãx− (y − ε(x0))∥Y + λJ (u)

}
, (3.11)

which provides a local reconstruction depending on x0. From here it is natural to expand this
construction into a sequence

xk+1 = S(xk) = argmin
x∈X

{
∥Ãx− (y − ε(xk))∥Y + λJ (u)

}
. (3.12)
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We emphasise here that updating the sequence, i.e., solving the linearised and thus convex optimi-
sation problem can be done efficiently with first-order optimisation methods.

This approach is useful, if a computationally cheap linear model is available to solve (3.12). The
update for the sequence then only requires one evaluation of the the accurate nonlinear forward model
and the solution of the linearised problem, which is cheaper then computing the Fréchet derivative
of the nonlinear model A. The publication [42] shows that even a fixed linear approximation Ã
performs well compared to updated approximations Ãk between each sequential step. We also note
that if one does not have access to the accurate model, or its evaluation even once is too expensive,
a successive estimation of the model error could be computed or estimated, see also [48]. Such a
sequential update of the approximation error is left for future research.

3.2 Learned image reconstructions and implicit model corrections

Let us now move to data-driven approaches in the context of learned image reconstruction. Here,
broadly speaking, we aim to formulate a parameterised reconstruction operator Rθ : Y → X , where
the parameters are learned from a suitable training set. This is most often achieved by utilising
neural networks to parameterise the reconstruction operator, we refer to [50] for an overview of
relevant methods.

In what follows, we are interested in the framework of learned iterative reconstructions [51, 52].
That is, we aim to formulate a network ΛΘ, which is designed to mimic a gradient descent scheme.
In particular, we train the networks to perform an iterative update, such that

xk+1 = ΛΘ

(
∇x

1

2
∥Axk − y∥2Y , xk

)
, (3.13)

where ∇x
1
2∥Axk − y∥2Y = A∗(Axk − y). Now, if the accurate model is expensive to evaluate,

computing the updates in (3.13) is expensive, which is especially a problem when training the
networks. If the model is included in the training this quickly becomes prohibitive. Thus, one could
use an approximate model Ã instead of the accurate model and compute an approximate gradient
as Ã∗(Ãxk − y) for the update in (3.13), as proposed in [11]. The network ΛΘ is then expected to
implicitly correct the introduced model error to produce a new reliable iterate.

That means that correction and regularisation are trained simultaneously with the update in
(3.13). Such approaches are typically trained by using a loss function, like the L2-loss, to measure
the distance between reconstruction and a ground truth phantom. This way a substantial speed-up,
compared to classical variational approaches, can be achieved with improved reconstruction quality.
In a recent extension [53] the implicit correction has been extended to a model corrected learned
primal dual method, where separate updating operators are learned in primal and dual space, offering
further improvements of reconstruction quality.

Nevertheless, such implicit corrections within a learned reconstruction operator offer limited
insights into how approximate models are corrected for and currently provide limited convergence
guarantees [54]. Thus, we will consider in the following an explicit correction that can then be
subsequently used in a variational framework.

3.3 Explicit model correction and a convergence result

Let us now consider corrections for the approximation error caused by the approximate model Ã via
a parameterisable nonlinear mapping FΘ : Y → Y, applied directly as correction to Ã as proposed
in [9]. This mapping could be given by a (convolutional) neural network, but other options can be
considered. This leads to a corrected operator AΘ of the form

AΘ = FΘ ◦ Ã. (3.14)

We aim to choose the correction FΘ such that ideally AΘ(x) ≈ Ax for some x ∈ X of interest.
The primary question that we aim to answer is, whether such corrected models (3.14) can be subse-
quently used in variational regularisation approaches. Thus, it is natural to require that the obtained
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solutions involving the corrected operator AΘ and the accurate operator A, are close, that is

argmin
x∈X

1

2
∥AΘ(x)− y∥2Y + λJ (x) ≈ argmin

x∈X

1

2
∥Ax− y∥2Y + λJ (x), (3.15)

with regularisation functional J and associated hyper-parameter λ. Solutions are then usually
computed by an iterative algorithm. Here we consider first order methods to draw connections to
learned iterative schemes as in (3.13). In particular, we consider a classic gradient descent scheme,
assuming a differentiable J . Then, given an initial guess x0, we can compute a solution by the
iterative process

xk+1 = xk − γk∇x

(
1

2
∥AΘxk − y∥2Y + λJ (xk)

)
, (3.16)

with an appropriately chosen step size γk > 0. When using (3.16) for the corrected operator it
seems natural to ask for a gradient consistency of the approximate gradient ∇x∥AΘ(x) − y∥2Y ≈
∇x∥Ax− y∥2Y . We recall that the correction FΘ in (3.14) is given by a nonlinear neural network and
following the chain rule we obtain

1

2
∇x∥AΘ(x)− y∥2Y = Ã∗

[
DFΘ(Ãx)

]∗ (
FΘ(Ãx)− y

)
. (3.17)

Here, we denote by DFΘ(y) the Fréchet derivative of FΘ at y, which is a linear operator Y → Y.
That means, to satisfy the gradient consistency condition, we would need

Ã∗
[
DFΘ(Ãx)

]∗ (
FΘ(Ãx)− y

)
≈ A∗(Ax− y). (3.18)

This solution comes with its own drawback: the range of the corrected fidelity term’s gradient (3.17)
is limited by the range of the approximate adjoint, R(Ã∗). Thus, we identify the key difficulty
here in the differences of the range of the accurate and the approximate adjoints rather than the
differences in the forward operators themselves. Indeed, a correction of the forward operator via
composition with a parametrised model FΘ in measurement space is not able to yield gradients close
to the gradients of the accurate data term if R(Ã∗) and R(A∗) are too different, see also Theorem
3.1 in [9].

3.3.1 Obtaining a Forward-Adjoint Correction

To achieve a gradient–consistent model correction two networks can be considered instead. That is,
we learn a network FΘ that corrects the forward model and another network GΦ that corrects the
adjoint, such that we have

AΘ := FΘ ◦ Ã, A∗
Φ := GΦ ◦ Ã∗ (3.19)

These corrections can then be obtained as follows. Given a set of training samples (xi, Axi), we train
the forward correction FΘ acting in measurement space Y, for the adjoint we train the network GΦ

acting on image space X , that yields the two losses

min
Θ

∑
i

∥FΘ(Ãx
i)−Axi∥Y and min

φ

∑
i

∥GΦ(Ã
∗ri)−A∗ri∥X . (3.20)

Here, we can choose the direction ri = FΘ(Ãx
i) − yi for the adjoint loss. This ensures that the

adjoint correction is in fact trained in directions relevant when solving the variational problem. We
can then use both corrections to compute approximate gradients of the data fidelity term ∥Ax−y∥2Y
as

A∗(Ax− y) ≈
(
GΦ ◦ Ã∗

)(
FΘ(Ãx)− y

)
. (3.21)

A convergence result can be established by considering the two functionals corresponding to accurate
and corrected operator as

L(x) := 1

2
∥Ax− y∥2Y + λJ (x), LΘ(x) :=

1

2
∥AΘ(x)− y∥2Y + λJ (x) (3.22)

and using the forward-adjoint correction in the minimisation. We can then obtain, under suitable
conditions outlined in [9], the main theorem.
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Theorem 7 (Convergence to a neighbourhood of the accurate solution x̂ [9]). Let ϵ > 0 and suitable
δ (controlling the subdifferential of LΘ). Assume both adjoint and forward operator are fit up to a
δ/4-margin, i.e.

∥A∥X→Y∥(A−AΘ)(xn)∥Y < δ/4, ∥(A∗ −A∗
Φ)(AΘ(xn)− y)∥X < δ/4 (3.23)

for all y and xn obtained during gradient descent over LΘ. Then eventually the gradient descent
dynamics over LΘ will reach an ϵ neighbourhood of the accurate solution x̂.

The proof of Theorem 7 relies on ensuring that the gradients (3.21) are pointing in the same
direction to yield a descent direction with respect to the accurate functional. That is, we want to
ensure that the angle is positive, i.e.,

cosΦv(x) :=
⟨∇L(x),∇†LΘ(x)⟩

∥∇L(x)∥2
> 0,

where ∇† denotes the forward-adjoint correction given by the right-hand side of (3.21). The exper-
iments in [9] show that when this alignment is ensured during the minimisation then indeed on can
observe a convergence to the same neighbourhood as with the accurate model, as illustrated in Fig-
ure 7, while it can be also observed that if a positive alignment can not be ensured the optimisation
procedure will diverge (green line). We also note that plots show different training strategies for
the model correction and in particular, a recursive training, which we discuss below, is necessary to
ensure the fit for all iterates in Theorem 7 and hence convergence to the same neighbourhood. If
this cannot be ensured we also observe that the decrease in the cost function stagnates.

Figure 7: (Left) Alignment (3.3.1) of approximate gradient to the gradient of the accurate data term
A∗(Axn − y) for different training approaches. (Right) True data term ∥Axn − y∥Y evaluated for
all methods on the ball test set of 64 samples, tracked throughout the gradient descent scheme, as
shown in [9].

3.3.2 Limitations and extensions

The first, minor difficulty with this approach is that it requires training two networks, one for the
forward operator A and one for its adjoint A∗. This could be avoided by using training data for
the normal operator A∗A as in Section 2.4.2 and learning a single network NΘ : X → X to satisfy
NΘ(Ã

∗Ãxi) ≈ A∗Axi. This will be sufficient to approximate the gradient of the data fidelity term
∥Ax− y∥2Y , see (3.21).
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A much more serious difficulty is that Theorem 7 requires that the trained networks approximate
the exact forward and adjoint operators for all xn obtained during gradient descent (and not just
in the vicinity of training samples {xi}i=1,...,n). In practice this can be slightly relaxed by requiring
that the approximation is valid along likely trajectories, but this requires much more complicated
training data: one needs to run the iterations for every training image xi and add the values of the
forward operator and its adjoint along the trajectory to the training set. This makes training very
cumbersome and computationally expensive. This is discussed more in Section 4.3.1.

A possible remedy for this is to use iterative algorithms that stay in the vicinity of the training
images {xi}i=1,...,n, such as the projected gradient scheme in [55] where the authors consider a
constrained variational problem over a manifold. A difficulty is, however, that in our setting the
manifold is given implicitly via training samples {xi}i=1,...,n and needs to be estimated “on the fly”
as the iterations proceed, which is currently work in progress.

3.3.3 Connections to regularisation by projection

The simplified model Ã can also be used in the context of regularisation by projection (see Sec-
tion 2.3.3). While the learned linear model APXn is exact on the subspace Xn spanned by the
training images {xi}i=1,...,n, on the complement of this subspace the learned model is zero, and it
may be beneficial to use the simplified model Ã instead. This will lead to the following approximation
of the forward operator

A ≈ APXn + Ã(Id− PXn)

The corresponding variational problem will then read as follows (cf. (2.12))

min
x∈X

1

2

∥∥∥[APXn + Ã(Id− PXn)
]
x− yδ

∥∥∥2 + αJ (x) (3.24)

and the gradient descent iteration will become

xk+1 = xk − τk

([
PXnA

∗APXn + (Id− PXn)Ã
∗Ã(Id− PXn)

]
xk

−
(
PXnA

∗ + (Id− PXn)Ã
∗
)
yδ + αqk

)
, qk ∈ ∂J (xk). (3.25)

All operators here can be computed without numerical access to the exact model A, relying only
on the training pairs {xi, yi = Axi}i=1,...,n and the simplified model Ã. (Recall that the operator
PXnA

∗ = (APXn)
∗ can be computed using these training pairs via (2.15)).

Alternatively, a version of the iteration (2.17) that combines a learned component over Xn and
an approximate component over X⊥

n is possible, cf. (2.17):

xk+1 = xk − τk

([
A∗APXn + Ã∗Ã(Id− PXn)

]
xk

−
(
A∗PYn + Ã∗(Id− PYn)

)
yδ + αqk

)
. (3.26)

This iteration only requires the training data {xi, zi = A∗Axi}i=1,...,n for the normal operator, and
the simplified model Ã.

Numerical experiments with these approaches, as well as comparisons with those from Sec-
tion 2.3.3, will be presented in Section 4.2.

4 Photoacoustic tomography

In this section we will present some applications of the previous approaches in photoacoustic tomog-
raphy (PAT). To do that, let us first briefly discuss the PAT forward problem and then introduce
the analytic approximate model for the context of model corrections.

To create the measured signal in PAT, biological tissue is exposed to a sufficiently short near-
infrared light pulse that is then absorbed by chromophores. This results in a spatially-varying
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pressure increase, which initiates an ultrasound (US) pulse, that then propagates to the tissue surface.
The measurement consequently consists of the detected waves in space-time at the boundary of the
tissue, constituting the measured PA data. This time evolution of the acoustic photoacoustic wave
can be modelled using the equations of linear acoustics [56, 57], and can be described as an initial
value problem in acoustics with spatial coordinates ζ ∈ R2 and time t ≥ 0 by an acoustic wave
equation

(∂tt − v2∆)p(ζ, t) = 0, (4.1)
p(ζ, t = 0) = p0(ζ), (4.2)

∂tp(ζ, t = 0) = 0. (4.3)

The measurement of the time series is then modelled as a linear operator M acting on the pressure
field p(ζ, t) restricted to the boundary Γ of the computational domain and a finite time window:

y = M p|Γ×(0,T ). (4.4)

Together, equations (4.1) and (4.4) define the linear forward model that we consider in this study

Ax = y, (4.5)

from initial pressure x = p0(ζ) to the measured time series y. This forward model can be accurately
simulated by a pseudo-spectral time-stepping model as outlined in [57, 58]. While providing an
efficient implementation, time-stepping can still take a considerable amount of time depending on a
possibly fine time discretisation.

Thus, we can consider a model that eliminates the time stepping and replaces it with one (Fast)
Fourier transform. First, we can consider the case where measurement points lie on a line (ζ2 = 0)
outside the support of x. Then under the assumption of constant speed-of-sound, the pressure on
the sensor can be related to x by [56, 59]:

p(ζ1, t) =
1

c2
Fk1 {Cω {B(k1, ω)x̃(k1, ω)}} , (4.6)

where x̃(k1, ω) is obtained from the Fourier transform x̂(k) = Fζ{x(ζ)} via the dispersion relation
(ω/c)2 = k21 + k22, Cω is a cosine transform from ω to t, and Fk1 is the 1D inverse Fourier Transform
from k1 to ζ1 on the detector. The weighting factor,

B(k1, ω) = ω/

(
sgn(ω)

√
(ω/c)2 − k21

)
, (4.7)

contains an integrable singularity which means that if (4.6) is evaluated by discretisation on a
rectangular grid (enabling the application of FFT for efficient calculation), then aliasing will apear in
the measured data p(ζ1, t). Consequently, evaluating (4.6) using FFT leads to a fast but approximate
forward model. In fact, we can control the degree of aliasing, by avoiding waves that arrive close
to parallel at the sensor. This could be included in the model as an angular thresholding to control
the degree of aliasing, we refer to [11] to a more detailed discussion. Either way, with or without
angular thresholding in the weighting factor B, the relation (4.6) defines the approximate model
used in the following: Ãx = y. The difference between the accurate model A and the approximate
model Ã is shown in Figure 8. The aliasing artefacts are clearly visible in the data space and the
resulting normal operator does carry wrong information for the reconstruction.

4.1 Training data

We will consider a computational domain (ζ1, ζ2) ∈ Ω = [0, 1]×[0, 1] with a rectangular discretisation
of 64 × 64 pixels. The measurements are taken at the top of the domain. The background value is
set to zero and we sample a number of indicator functions of discs located randomly in the domain
with parameters uniformly distributed as follows: center (ζ1, ζ2) ∈ [0.25, 0.75] × [0.25, 0.75], radius
r ∈ [0.1, 0.2]. Each disc has a random absorption value p ∈ [0.5, 1].
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Figure 8: Illustration of forward operator A and corresponding approximate model Ã. The sensor is
indicated with a red line (left/right image), in the measurements (middle) the red line corresponds
to initial time t = 0. On the right are the normal operator A∗A and the approximate pair Ã∗Ã.

4.2 Experiments with projected variational regularisation

In this section we present numerical experiments with the method described in Section 2.4. As the
regulariser J we take the Total Variation (TV), which we define as a functional on L2(Ω) extending
it with the value +∞ on L2(Ω) \ BV(Ω). This is a common setting in imaging [60].

To orthonormalise the training images {xi}i=1,...,n, we use the modified Gram-Schmidt algo-
rithm [61]. Due to its numerical instability, we restrict ourselves to n = 1500 training samples.

We use the iterations (2.14), (2.17), (3.25) and (3.26). The results are shown in Figure 9. The
top row shows the ground truth and the reconstruction with the exact operator, which is our golden
standard in these experiments. Performing a basic parameter search, we find a reasonable value of
the regularisation parameter α = 2 · 10−4 which yields a relative reconstruction error of 6%.

With a learned forward (middle row left) and a learned normal operator (middle row right) we
obtain a relative reconstruction error of 23 − 24%, also after performing a basic parameter search
and finding a reasonable value of α = 2 · 10−2. The value of the parameter is higher, as expected
in a problem with operator errors. The reconstruction obtained with a learned normal operator
looks sharper than the one obtained with a learned forward operator, but overall the reconstruction
quality is comparable.

Using a combined model as in (3.25) and (3.26), surprisingly, yields inferior performance. For
the combined forward operator (bottom row left) we see artefacts outside of the support of the
discs in the training set – this is the region where only the approximate model is available. The
learned normal operator (bottom row right) is affected less, possibly because the support of the
backprojections {zi}i=1,...,n is larger than that of the training images {xi}i=1,...,n. However, the
reconstruction still looks blurrier than without the approximate model (middle row right).

In Figure 10 we investigate the influence of the size of the training set n on the reconstruction
quality. We find that the method is very robust. For as few as n = 500 samples we still obtain a
reasonable reconstruction (top row), the learned normal operator (right) performing slightly better
than the learned forward operator (left). Even for n = 100 the location of the disc is identified
reasonably well, even if the shape is not well reconstructed (middle row; the regularisation parameter
has to be chosen larger in this case to ensure stability). The reason for such robustness seems to
be that the learned model “sees” the area where the ground truth disc is located because there are
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Figure 9: Projected variational regularisation. Experiments with n = 1500 training samples. Both
learned forward operator and learned normal operator perform well, the reconstructions with the
learned normal operator being perhaps a bit sharper. Surprisingly, combining the learned forward
model with an approximate one Ã decreases the reconstruction quality.

other discs nearby in the training set. If we further deflate the training set to an extremely low
size of n = 2 so that there is no overlap between the training discs and the exact solution, then the
support of the reconstruction is completely off (bottom row).
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Figure 10: Projected variational regularisation. The effect of the number of training samples. The
method is surprisingly robust with respect to the number of samples. Reconstructions are still
reasonable for as few as 500 samples (top row), and even for 100 (middle row) samples the location
of the disc is identified reasonably well. The reason is that the learned operator still “sees” the region
where the exact solution is localised because there are discs in the training set located nearby. If
we decrease the number of samples further so that the support of the samples does not overlap with
the support of the ground truth then the location of the disc is identified incorrectly (bottom row).

4.3 Experiments with learned model correction

We continue with experiments with the second approach considered in this chapter, the learned
model correction. As we have seen in Figure 8, the approximate model introduces artefacts that
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will cause the gradients to be incorrect, and hence a correction needs to be applied. As discussed
in Section 3, there are several ways to achieve such a model correction, classified into implicit and
explicit approaches. Here, we will only discuss the explicit corrections.

The experiments are also conducted on the disc data set and we compare the different approaches
for the training procedure: learning a correction for the forward operator only, or corrections for both
the forward operator and its adjoint. Additionally, we discuss the influence of training only on the
data manifold of ground-truth samples {xi}i=1,...,n or along the trajectory as discussed in Section 3.3.
We note, that these experiments are as presented in [9] and the results are presented in Figure
11. We see that the accurate model, providing the reference reconstruction, with total variation
regularisation does produce a reasonably good reconstruction with an average error of 12% over the
64 test samples, but due to strong limited view artefacts we still have a slight smearing visible. The
approximate and uncorrected forward operator Ã is not capable of producing a sufficiently good
reconstruction and results in strong artefacts in the background medium. This is also reflected in
the average reconstruction error of 55%. The classic approximation error method is indeed able to
correct the strong artefacts and reaches a relative error of 32%, but results in a loss of contrast and
thus wrong quantitative values. It can be also seen in Figure 7 that the convergence is much slower.

Let us now examine the learned model corrections using a neural network, that is AΘ := FΘ ◦ Ã
for the forward correction and, if employed, A∗

Φ := GΦ ◦ Ã∗ for the adjoint correction. We can see
a clear difference between training along the trajectory or and training on the data manifold only.
For both corrections, Forward and Forward-Adjoint, the training on the simple data manifold is
not sufficient and leads to strong artefacts, resulting in an average relative error of 53% and 41%
respectively. This is due to the correction not being valid near the point of convergence and hence
the conditions of Theorem 7 are violated (recall that the theorem requires that the correction is
valid for all xn). If we make sure that the correction is valid for all xn by training the networks
with (3.20) not only on the data manifold of ground truth samples, but also for all xn that arise
during the optimisation procedure, then we can ensure converge to a neighbourhood of the accurate
minimiser as stated by Theorem 7 for the Forward-Adjoint correction. This is clearly seen in the
reconstruction that is visually close to the accurate model and also reflected in the average relative
error of 14% closest to the accurate model.

Unfortunately, this improvement in reconstruction results comes with an expensive training pro-
cedure that takes about 4 days in total to train the networks carefully, whereas training on the data
manifold of discs and corresponding measurements takes only a few hours for the Forward-Adjoint
correction. This indicates that there is a need to improve training strategies as we discuss next.

4.3.1 Training without trajectory

We have seen in the previous section that training along a trajectory is crucial for the success of the
explicit learned model correction when solving the variational problem, which is in accordance with
Theorem 7 requiring a valid approximation for all xn obtained during minimisation.

Thus, it may be necessary to think of alternatives to the costly trajectory training. One such
option could be to restrict the minimisation of the variational problem

argmin
x∈X

1

2
∥AΘ(x)− y∥2Y + λJ (x) (4.8)

to a suitable set, such as the manifold representing the data distribution {xi}i=1,...,n. This way, the
correction can be trained just on the manifold itself and constraining the trajectory to the vicinity
of the manifold will ensure that the correction is valid for all xn.

We present in Figure 12 a proof-of-concept result for the hypothesis that training and optimi-
sation over the data manifold can eliminate the need for trajectory training. In particular, we see
that solving the variational problem on the manifold does work well for the accurate model, whereas
the approximate model suffers loss of contrast and sharpness. If we use the corrected model trained
on the data manifold, but optimisation is performed freely in the full space, we introduce strong
artefacts, as the correction is not valid for all xn. However, when the optimisation path is restricted
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Figure 11: Comparison of reconstructions using the approximate model and learned corrections
under various training schemes. (Top row) Ground truth and reconstruction with the accurate
model, the sensor is located at the top. (Second row) Approximate operator Ã and reconstruction
using the approximation error method. (Third row) Learned correction of the forward model trained
on disk phantoms only (left) and recursively on the trajectory (right). (Bottom row) Forward-adjoint
correction trained on disk phantoms only (left) and recursively on the trajectory (right).

to the manifold we obtain a result close to the accurate model. Training of the model correction
on the data manifold only takes roughly 90 minutes, compared to the full trajectory training that
required 4 days. This is a promising solution to the trajectory training problem, which is currently
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work in progress.

Figure 12: Proof-of-concept results for training and optimisation over the data manifold instead
of trajectory. (Top) optimisation is carried out on the data manifold. This already improved
reconstructions with the approximate model, but results in loss of contrast. (Bottom) Corrected
models trained on data manifold only. On the left optimisation is carried out over all X and on the
right only on the data manifold.

5 Summary and conclusions

Inverse problems involving high dimensions and/or computationally expensive forward operators
necessitate the use of computationally cheaper approximate models. This applies, e.g., to settings
when imaging is performed in time-critical scenarios or when the forward operator is called many
times within a larger pipeline of a learning framework.

In this chapter we have focused on the specific application in linear inverse problems, where a
regularised inversion operator is desired and the solution to the variational formulation is sought.
We have discussed two main approaches, learning an approximation of the forward or the inverse
operator using data-driven projections [8], and a data-driven correction to an analytic approximation
[9]. A common theme has emerged, which is that in addition to learning an approximation of the
forward operator, one often needs to learn a separate approximation of the adjoint.

While both approaches provide a possible solution to the problem of computationally expensive
models in inverse problems, they also come with some drawbacks. The data-driven projection
method requires a good quality linear approximation of the ground truth by training images, hence,
for example, it is sensitive to shifting the image. If the forward operator is shift-equivariant (e.g., a
convolution), it could be possible to incorporate a non-linear “projection” onto the training set by
finding the shift that minimises the distance between the image and the span of the training data
(a similar approach can be applied, e.g., to rotations). However, this is a research direction not yet
taken.

In case of learned model corrections we have discussed that while solutions are faster to compute,
the computational burden moves to an expensive training phase that needs to ensure validity of the
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correction for all xn over the optimisation trajectory to ensure convergence. Finally, we presented
a proof-of-concept solution that may overcome this burden by limiting training and optimisation to
the data manifold, which is an interesting direction for future studies.
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